Function petgraph::algo::astar::astar

source ·
pub fn astar<G, F, H, K, IsGoal>(
    graph: G,
    start: G::NodeId,
    is_goal: IsGoal,
    edge_cost: F,
    estimate_cost: H
) -> Option<(K, Vec<G::NodeId>)>where
    G: IntoEdges + Visitable,
    IsGoal: FnMut(G::NodeId) -> bool,
    G::NodeId: Eq + Hash,
    F: FnMut(G::EdgeRef) -> K,
    H: FnMut(G::NodeId) -> K,
    K: Measure + Copy,
Expand description

[Generic] A* shortest path algorithm.

Computes the shortest path from start to finish, including the total path cost.

finish is implicitly given via the is_goal callback, which should return true if the given node is the finish node.

The function edge_cost should return the cost for a particular edge. Edge costs must be non-negative.

The function estimate_cost should return the estimated cost to the finish for a particular node. For the algorithm to find the actual shortest path, it should be admissible, meaning that it should never overestimate the actual cost to get to the nearest goal node. Estimate costs must also be non-negative.

The graph should be Visitable and implement IntoEdges.

Example

use petgraph::Graph;
use petgraph::algo::astar;

let mut g = Graph::new();
let a = g.add_node((0., 0.));
let b = g.add_node((2., 0.));
let c = g.add_node((1., 1.));
let d = g.add_node((0., 2.));
let e = g.add_node((3., 3.));
let f = g.add_node((4., 2.));
g.extend_with_edges(&[
    (a, b, 2),
    (a, d, 4),
    (b, c, 1),
    (b, f, 7),
    (c, e, 5),
    (e, f, 1),
    (d, e, 1),
]);

// Graph represented with the weight of each edge
// Edges with '*' are part of the optimal path.
//
//     2       1
// a ----- b ----- c
// | 4*    | 7     |
// d       f       | 5
// | 1*    | 1*    |
// \------ e ------/

let path = astar(&g, a, |finish| finish == f, |e| *e.weight(), |_| 0);
assert_eq!(path, Some((6, vec![a, d, e, f])));

Returns the total cost + the path of subsequent NodeId from start to finish, if one was found.