1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
#![doc = include_str!("../README.md")]
#![deny(missing_debug_implementations)]
#![deny(missing_docs)]
#![no_std]
#![cfg_attr(
feature = "allocator_api",
feature(allocator_api, nonnull_slice_from_raw_parts)
)]
#[doc(hidden)]
pub extern crate alloc as core_alloc;
#[cfg(feature = "boxed")]
pub mod boxed;
#[cfg(feature = "collections")]
pub mod collections;
mod alloc;
use core::cell::Cell;
use core::fmt::Display;
use core::iter;
use core::marker::PhantomData;
use core::mem;
use core::ptr::{self, NonNull};
use core::slice;
use core::str;
use core_alloc::alloc::{alloc, dealloc, Layout};
#[cfg(feature = "allocator_api")]
use core_alloc::alloc::{AllocError, Allocator};
pub use alloc::AllocErr;
/// An error returned from [`Bump::try_alloc_try_with`].
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum AllocOrInitError<E> {
/// Indicates that the initial allocation failed.
Alloc(AllocErr),
/// Indicates that the initializer failed with the contained error after
/// allocation.
///
/// It is possible but not guaranteed that the allocated memory has been
/// released back to the allocator at this point.
Init(E),
}
impl<E> From<AllocErr> for AllocOrInitError<E> {
fn from(e: AllocErr) -> Self {
Self::Alloc(e)
}
}
impl<E: Display> Display for AllocOrInitError<E> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
AllocOrInitError::Alloc(err) => err.fmt(f),
AllocOrInitError::Init(err) => write!(f, "initialization failed: {}", err),
}
}
}
/// An arena to bump allocate into.
///
/// ## No `Drop`s
///
/// Objects that are bump-allocated will never have their [`Drop`] implementation
/// called — unless you do it manually yourself. This makes it relatively
/// easy to leak memory or other resources.
///
/// If you have a type which internally manages
///
/// * an allocation from the global heap (e.g. [`Vec<T>`]),
/// * open file descriptors (e.g. [`std::fs::File`]), or
/// * any other resource that must be cleaned up (e.g. an `mmap`)
///
/// and relies on its `Drop` implementation to clean up the internal resource,
/// then if you allocate that type with a `Bump`, you need to find a new way to
/// clean up after it yourself.
///
/// Potential solutions are:
///
/// * Using [`bumpalo::boxed::Box::new_in`] instead of [`Bump::alloc`], that
/// will drop wrapped values similarly to [`std::boxed::Box`]. Note that this
/// requires enabling the `"boxed"` Cargo feature for this crate. **This is
/// often the easiest solution.**
///
/// * Calling [`drop_in_place`][drop_in_place] or using
/// [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types.
///
/// * Using [`bumpalo::collections::Vec`] instead of [`std::vec::Vec`].
///
/// * Avoiding allocating these problematic types within a `Bump`.
///
/// Note that not calling `Drop` is memory safe! Destructors are never
/// guaranteed to run in Rust, you can't rely on them for enforcing memory
/// safety.
///
/// [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
/// [`Vec<T>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
/// [`std::fs::File`]: https://doc.rust-lang.org/std/fs/struct.File.html
/// [drop_in_place]: https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html
/// [manuallydrop]: https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
/// [`bumpalo::collections::Vec`]: collections/vec/struct.Vec.html
/// [`std::vec::Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
/// [`bumpalo::boxed::Box::new_in`]: boxed/struct.Box.html#method.new_in
/// [`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html
///
/// ## Example
///
/// ```
/// use bumpalo::Bump;
///
/// // Create a new bump arena.
/// let bump = Bump::new();
///
/// // Allocate values into the arena.
/// let forty_two = bump.alloc(42);
/// assert_eq!(*forty_two, 42);
///
/// // Mutable references are returned from allocation.
/// let mut s = bump.alloc("bumpalo");
/// *s = "the bump allocator; and also is a buffalo";
/// ```
///
/// ## Allocation Methods Come in Many Flavors
///
/// There are various allocation methods on `Bump`, the simplest being
/// [`alloc`][Bump::alloc]. The others exist to satisfy some combination of
/// fallible allocation and initialization. The allocation methods are
/// summarized in the following table:
///
/// <table>
/// <thead>
/// <tr>
/// <th></th>
/// <th>Infallible Allocation</th>
/// <th>Fallible Allocation</th>
/// </tr>
/// </thead>
/// <tr>
/// <th>By Value</th>
/// <td><a href="#method.alloc"><code>alloc</code></a></td>
/// <td><a href="#method.try_alloc"><code>try_alloc</code></a></td>
/// </tr>
/// <tr>
/// <th>Infallible Initializer Function</th>
/// <td><a href="#method.alloc_with"><code>alloc_with</code></a></td>
/// <td><a href="#method.try_alloc_with"><code>try_alloc_with</code></a></td>
/// </tr>
/// <tr>
/// <th>Fallible Initializer Function</th>
/// <td><a href="#method.alloc_try_with"><code>alloc_try_with</code></a></td>
/// <td><a href="#method.try_alloc_try_with"><code>try_alloc_try_with</code></a></td>
/// </tr>
/// <tbody>
/// </tbody>
/// </table>
///
/// ### Fallible Allocation: The `try_alloc_` Method Prefix
///
/// These allocation methods let you recover from out-of-memory (OOM)
/// scenarioes, rather than raising a panic on OOM.
///
/// ```
/// use bumpalo::Bump;
///
/// let bump = Bump::new();
///
/// match bump.try_alloc(MyStruct {
/// // ...
/// }) {
/// Ok(my_struct) => {
/// // Allocation succeeded.
/// }
/// Err(e) => {
/// // Out of memory.
/// }
/// }
///
/// struct MyStruct {
/// // ...
/// }
/// ```
///
/// ### Initializer Functions: The `_with` Method Suffix
///
/// Calling one of the generic `…alloc(x)` methods is essentially equivalent to
/// the matching [`…alloc_with(|| x)`](?search=alloc_with). However if you use
/// `…alloc_with`, then the closure will not be invoked until after allocating
/// space for storing `x` on the heap.
///
/// This can be useful in certain edge-cases related to compiler optimizations.
/// When evaluating for example `bump.alloc(x)`, semantically `x` is first put
/// on the stack and then moved onto the heap. In some cases, the compiler is
/// able to optimize this into constructing `x` directly on the heap, however
/// in many cases it does not.
///
/// The `…alloc_with` functions try to help the compiler be smarter. In most
/// cases doing for example `bump.try_alloc_with(|| x)` on release mode will be
/// enough to help the compiler realize that this optimization is valid and
/// to construct `x` directly onto the heap.
///
/// #### Warning
///
/// These functions critically depend on compiler optimizations to achieve their
/// desired effect. This means that it is not an effective tool when compiling
/// without optimizations on.
///
/// Even when optimizations are on, these functions do not **guarantee** that
/// the value is constructed on the heap. To the best of our knowledge no such
/// guarantee can be made in stable Rust as of 1.54.
///
/// ### Fallible Initialization: The `_try_with` Method Suffix
///
/// The generic [`…alloc_try_with(|| x)`](?search=_try_with) methods behave
/// like the purely `_with` suffixed methods explained above. However, they
/// allow for fallible initialization by accepting a closure that returns a
/// [`Result`] and will attempt to undo the initial allocation if this closure
/// returns [`Err`].
///
/// #### Warning
///
/// If the inner closure returns [`Ok`], space for the entire [`Result`] remains
/// allocated inside `self`. This can be a problem especially if the [`Err`]
/// variant is larger, but even otherwise there may be overhead for the
/// [`Result`]'s discriminant.
///
/// <p><details><summary>Undoing the allocation in the <code>Err</code> case
/// always fails if <code>f</code> successfully made any additional allocations
/// in <code>self</code>.</summary>
///
/// For example, the following will always leak also space for the [`Result`]
/// into this `Bump`, even though the inner reference isn't kept and the [`Err`]
/// payload is returned semantically by value:
///
/// ```rust
/// let bump = bumpalo::Bump::new();
///
/// let r: Result<&mut [u8; 1000], ()> = bump.alloc_try_with(|| {
/// let _ = bump.alloc(0_u8);
/// Err(())
/// });
///
/// assert!(r.is_err());
/// ```
///
///</details></p>
///
/// Since [`Err`] payloads are first placed on the heap and then moved to the
/// stack, `bump.…alloc_try_with(|| x)?` is likely to execute more slowly than
/// the matching `bump.…alloc(x?)` in case of initialization failure. If this
/// happens frequently, using the plain un-suffixed method may perform better.
///
/// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
/// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
/// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
///
/// ### `Bump` Allocation Limits
///
/// `bumpalo` supports setting a limit on the maximum bytes of memory that can
/// be allocated for use in a particular `Bump` arena. This limit can be set and removed with
/// [`set_allocation_limit`][Bump::set_allocation_limit].
/// The allocation limit is only enforced when allocating new backing chunks for
/// a `Bump`. Updating the allocation limit will not affect existing allocations
/// or any future allocations within the `Bump`'s current chunk.
///
/// #### Example
///
/// ```
/// let bump = bumpalo::Bump::new();
///
/// assert_eq!(bump.allocation_limit(), None);
/// bump.set_allocation_limit(Some(0));
///
/// assert!(bump.try_alloc(5).is_err());
///
/// bump.set_allocation_limit(Some(6));
///
/// assert_eq!(bump.allocation_limit(), Some(6));
///
/// bump.set_allocation_limit(None);
///
/// assert_eq!(bump.allocation_limit(), None);
/// ```
///
/// #### Warning
///
/// Because of backwards compatibility, allocations that fail
/// due to allocation limits will not present differently than
/// errors due to resource exhaustion.
#[derive(Debug)]
pub struct Bump {
// The current chunk we are bump allocating within.
current_chunk_footer: Cell<NonNull<ChunkFooter>>,
allocation_limit: Cell<Option<usize>>,
}
#[repr(C)]
#[derive(Debug)]
struct ChunkFooter {
// Pointer to the start of this chunk allocation. This footer is always at
// the end of the chunk.
data: NonNull<u8>,
// The layout of this chunk's allocation.
layout: Layout,
// Link to the previous chunk.
//
// Note that the last node in the `prev` linked list is the canonical empty
// chunk, whose `prev` link points to itself.
prev: Cell<NonNull<ChunkFooter>>,
// Bump allocation finger that is always in the range `self.data..=self`.
ptr: Cell<NonNull<u8>>,
// The bytes allocated in all chunks so far, the canonical empty chunk has
// a size of 0 and for all other chunks, `allocated_bytes` will be
// the allocated_bytes of the current chunk plus the allocated bytes
// of the `prev` chunk.
allocated_bytes: usize,
}
/// A wrapper type for the canonical, statically allocated empty chunk.
///
/// For the canonical empty chunk to be `static`, its type must be `Sync`, which
/// is the purpose of this wrapper type. This is safe because the empty chunk is
/// immutable and never actually modified.
#[repr(transparent)]
struct EmptyChunkFooter(ChunkFooter);
unsafe impl Sync for EmptyChunkFooter {}
static EMPTY_CHUNK: EmptyChunkFooter = EmptyChunkFooter(ChunkFooter {
// This chunk is empty (except the foot itself).
layout: Layout::new::<ChunkFooter>(),
// The start of the (empty) allocatable region for this chunk is itself.
data: unsafe { NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8) },
// The end of the (empty) allocatable region for this chunk is also itself.
ptr: Cell::new(unsafe {
NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8)
}),
// Invariant: the last chunk footer in all `ChunkFooter::prev` linked lists
// is the empty chunk footer, whose `prev` points to itself.
prev: Cell::new(unsafe {
NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut ChunkFooter)
}),
// Empty chunks count as 0 allocated bytes in an arena.
allocated_bytes: 0,
});
impl EmptyChunkFooter {
fn get(&'static self) -> NonNull<ChunkFooter> {
unsafe { NonNull::new_unchecked(&self.0 as *const ChunkFooter as *mut ChunkFooter) }
}
}
impl ChunkFooter {
// Returns the start and length of the currently allocated region of this
// chunk.
fn as_raw_parts(&self) -> (*const u8, usize) {
let data = self.data.as_ptr() as *const u8;
let ptr = self.ptr.get().as_ptr() as *const u8;
debug_assert!(data <= ptr);
debug_assert!(ptr <= self as *const ChunkFooter as *const u8);
let len = unsafe { (self as *const ChunkFooter as *const u8).offset_from(ptr) as usize };
(ptr, len)
}
/// Is this chunk the last empty chunk?
fn is_empty(&self) -> bool {
ptr::eq(self, EMPTY_CHUNK.get().as_ptr())
}
}
impl Default for Bump {
fn default() -> Bump {
Bump::new()
}
}
impl Drop for Bump {
fn drop(&mut self) {
unsafe {
dealloc_chunk_list(self.current_chunk_footer.get());
}
}
}
#[inline]
unsafe fn dealloc_chunk_list(mut footer: NonNull<ChunkFooter>) {
while !footer.as_ref().is_empty() {
let f = footer;
footer = f.as_ref().prev.get();
dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
}
}
// `Bump`s are safe to send between threads because nothing aliases its owned
// chunks until you start allocating from it. But by the time you allocate from
// it, the returned references to allocations borrow the `Bump` and therefore
// prevent sending the `Bump` across threads until the borrows end.
unsafe impl Send for Bump {}
#[inline]
pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
debug_assert!(divisor > 0);
debug_assert!(divisor.is_power_of_two());
Some(n.checked_add(divisor - 1)? & !(divisor - 1))
}
#[inline]
pub(crate) fn round_down_to(n: usize, divisor: usize) -> usize {
debug_assert!(divisor > 0);
debug_assert!(divisor.is_power_of_two());
n & !(divisor - 1)
}
// After this point, we try to hit page boundaries instead of powers of 2
const PAGE_STRATEGY_CUTOFF: usize = 0x1000;
// We only support alignments of up to 16 bytes for iter_allocated_chunks.
const SUPPORTED_ITER_ALIGNMENT: usize = 16;
const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();
// Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case
const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN;
const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()];
// Maximum typical overhead per allocation imposed by allocators.
const MALLOC_OVERHEAD: usize = 16;
// This is the overhead from malloc, footer and alignment. For instance, if
// we want to request a chunk of memory that has at least X bytes usable for
// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
// after adding a footer, malloc overhead and alignment, the chunk of memory
// the allocator actually sets aside for us is X+OVERHEAD rounded up to the
// nearest suitable size boundary.
const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1);
// Choose a relatively small default initial chunk size, since we double chunk
// sizes as we grow bump arenas to amortize costs of hitting the global
// allocator.
const FIRST_ALLOCATION_GOAL: usize = 1 << 9;
// The actual size of the first allocation is going to be a bit smaller
// than the goal. We need to make room for the footer, and we also need
// take the alignment into account.
const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;
/// The memory size and alignment details for a potential new chunk
/// allocation.
#[derive(Debug, Clone, Copy)]
struct NewChunkMemoryDetails {
new_size_without_footer: usize,
align: usize,
size: usize,
}
/// Wrapper around `Layout::from_size_align` that adds debug assertions.
#[inline]
unsafe fn layout_from_size_align(size: usize, align: usize) -> Layout {
if cfg!(debug_assertions) {
Layout::from_size_align(size, align).unwrap()
} else {
Layout::from_size_align_unchecked(size, align)
}
}
#[inline(never)]
fn allocation_size_overflow<T>() -> T {
panic!("requested allocation size overflowed")
}
// This can be migrated to directly use `usize::abs_diff` when the MSRV
// reaches `1.60`
fn abs_diff(a: usize, b: usize) -> usize {
usize::max(a, b) - usize::min(a, b)
}
impl Bump {
/// Construct a new arena to bump allocate into.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// # let _ = bump;
/// ```
pub fn new() -> Bump {
Self::with_capacity(0)
}
/// Attempt to construct a new arena to bump allocate into.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::try_new();
/// # let _ = bump.unwrap();
/// ```
pub fn try_new() -> Result<Bump, AllocErr> {
Bump::try_with_capacity(0)
}
/// Construct a new arena with the specified byte capacity to bump allocate into.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::with_capacity(100);
/// # let _ = bump;
/// ```
pub fn with_capacity(capacity: usize) -> Bump {
Bump::try_with_capacity(capacity).unwrap_or_else(|_| oom())
}
/// Attempt to construct a new arena with the specified byte capacity to bump allocate into.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::try_with_capacity(100);
/// # let _ = bump.unwrap();
/// ```
pub fn try_with_capacity(capacity: usize) -> Result<Self, AllocErr> {
if capacity == 0 {
return Ok(Bump {
current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
allocation_limit: Cell::new(None),
});
}
let layout = unsafe { layout_from_size_align(capacity, 1) };
let chunk_footer = unsafe {
Self::new_chunk(
Bump::new_chunk_memory_details(None, layout).ok_or(AllocErr)?,
layout,
EMPTY_CHUNK.get(),
)
.ok_or(AllocErr)?
};
Ok(Bump {
current_chunk_footer: Cell::new(chunk_footer),
allocation_limit: Cell::new(None),
})
}
/// The allocation limit for this arena in bytes.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::with_capacity(0);
///
/// assert_eq!(bump.allocation_limit(), None);
///
/// bump.set_allocation_limit(Some(6));
///
/// assert_eq!(bump.allocation_limit(), Some(6));
///
/// bump.set_allocation_limit(None);
///
/// assert_eq!(bump.allocation_limit(), None);
/// ```
pub fn allocation_limit(&self) -> Option<usize> {
self.allocation_limit.get()
}
/// Set the allocation limit in bytes for this arena.
///
/// The allocation limit is only enforced when allocating new backing chunks for
/// a `Bump`. Updating the allocation limit will not affect existing allocations
/// or any future allocations within the `Bump`'s current chunk.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::with_capacity(0);
///
/// bump.set_allocation_limit(Some(0));
///
/// assert!(bump.try_alloc(5).is_err());
/// ```
pub fn set_allocation_limit(&self, limit: Option<usize>) {
self.allocation_limit.set(limit)
}
/// How much headroom an arena has before it hits its allocation
/// limit.
fn allocation_limit_remaining(&self) -> Option<usize> {
self.allocation_limit.get().and_then(|allocation_limit| {
let allocated_bytes = self.allocated_bytes();
if allocated_bytes > allocation_limit {
None
} else {
Some(abs_diff(allocation_limit, allocated_bytes))
}
})
}
/// Whether a request to allocate a new chunk with a given size for a given
/// requested layout will fit under the allocation limit set on a `Bump`.
fn chunk_fits_under_limit(
allocation_limit_remaining: Option<usize>,
new_chunk_memory_details: NewChunkMemoryDetails,
) -> bool {
allocation_limit_remaining
.map(|allocation_limit_left| {
allocation_limit_left >= new_chunk_memory_details.new_size_without_footer
})
.unwrap_or(true)
}
/// Determine the memory details including final size, alignment and
/// final size without footer for a new chunk that would be allocated
/// to fulfill an allocation request.
fn new_chunk_memory_details(
new_size_without_footer: Option<usize>,
requested_layout: Layout,
) -> Option<NewChunkMemoryDetails> {
let mut new_size_without_footer =
new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
// We want to have CHUNK_ALIGN or better alignment
let mut align = CHUNK_ALIGN;
// If we already know we need to fulfill some request,
// make sure we allocate at least enough to satisfy it
align = align.max(requested_layout.align());
let requested_size =
round_up_to(requested_layout.size(), align).unwrap_or_else(allocation_size_overflow);
new_size_without_footer = new_size_without_footer.max(requested_size);
// We want our allocations to play nice with the memory allocator,
// and waste as little memory as possible.
// For small allocations, this means that the entire allocation
// including the chunk footer and mallocs internal overhead is
// as close to a power of two as we can go without going over.
// For larger allocations, we only need to get close to a page
// boundary without going over.
if new_size_without_footer < PAGE_STRATEGY_CUTOFF {
new_size_without_footer =
(new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
} else {
new_size_without_footer =
round_up_to(new_size_without_footer + OVERHEAD, 0x1000)? - OVERHEAD;
}
debug_assert_eq!(align % CHUNK_ALIGN, 0);
debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
let size = new_size_without_footer
.checked_add(FOOTER_SIZE)
.unwrap_or_else(allocation_size_overflow);
Some(NewChunkMemoryDetails {
new_size_without_footer,
size,
align,
})
}
/// Allocate a new chunk and return its initialized footer.
///
/// If given, `layouts` is a tuple of the current chunk size and the
/// layout of the allocation request that triggered us to fall back to
/// allocating a new chunk of memory.
unsafe fn new_chunk(
new_chunk_memory_details: NewChunkMemoryDetails,
requested_layout: Layout,
prev: NonNull<ChunkFooter>,
) -> Option<NonNull<ChunkFooter>> {
let NewChunkMemoryDetails {
new_size_without_footer,
align,
size,
} = new_chunk_memory_details;
let layout = layout_from_size_align(size, align);
debug_assert!(size >= requested_layout.size());
let data = alloc(layout);
let data = NonNull::new(data)?;
// The `ChunkFooter` is at the end of the chunk.
let footer_ptr = data.as_ptr().add(new_size_without_footer);
debug_assert_eq!((data.as_ptr() as usize) % align, 0);
debug_assert_eq!(footer_ptr as usize % CHUNK_ALIGN, 0);
let footer_ptr = footer_ptr as *mut ChunkFooter;
// The bump pointer is initialized to the end of the range we will
// bump out of.
let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8));
// The `allocated_bytes` of a new chunk counts the total size
// of the chunks, not how much of the chunks are used.
let allocated_bytes = prev.as_ref().allocated_bytes + new_size_without_footer;
ptr::write(
footer_ptr,
ChunkFooter {
data,
layout,
prev: Cell::new(prev),
ptr,
allocated_bytes,
},
);
Some(NonNull::new_unchecked(footer_ptr))
}
/// Reset this bump allocator.
///
/// Performs mass deallocation on everything allocated in this arena by
/// resetting the pointer into the underlying chunk of memory to the start
/// of the chunk. Does not run any `Drop` implementations on deallocated
/// objects; see [the top-level documentation](struct.Bump.html) for details.
///
/// If this arena has allocated multiple chunks to bump allocate into, then
/// the excess chunks are returned to the global allocator.
///
/// ## Example
///
/// ```
/// let mut bump = bumpalo::Bump::new();
///
/// // Allocate a bunch of things.
/// {
/// for i in 0..100 {
/// bump.alloc(i);
/// }
/// }
///
/// // Reset the arena.
/// bump.reset();
///
/// // Allocate some new things in the space previously occupied by the
/// // original things.
/// for j in 200..400 {
/// bump.alloc(j);
/// }
///```
pub fn reset(&mut self) {
// Takes `&mut self` so `self` must be unique and there can't be any
// borrows active that would get invalidated by resetting.
unsafe {
if self.current_chunk_footer.get().as_ref().is_empty() {
return;
}
let mut cur_chunk = self.current_chunk_footer.get();
// Deallocate all chunks except the current one
let prev_chunk = cur_chunk.as_ref().prev.replace(EMPTY_CHUNK.get());
dealloc_chunk_list(prev_chunk);
// Reset the bump finger to the end of the chunk.
cur_chunk.as_ref().ptr.set(cur_chunk.cast());
// Reset the allocated size of the chunk.
cur_chunk.as_mut().allocated_bytes = cur_chunk.as_ref().layout.size();
debug_assert!(
self.current_chunk_footer
.get()
.as_ref()
.prev
.get()
.as_ref()
.is_empty(),
"We should only have a single chunk"
);
debug_assert_eq!(
self.current_chunk_footer.get().as_ref().ptr.get(),
self.current_chunk_footer.get().cast(),
"Our chunk's bump finger should be reset to the start of its allocation"
);
}
}
/// Allocate an object in this `Bump` and return an exclusive reference to
/// it.
///
/// ## Panics
///
/// Panics if reserving space for `T` fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc("hello");
/// assert_eq!(*x, "hello");
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc<T>(&self, val: T) -> &mut T {
self.alloc_with(|| val)
}
/// Try to allocate an object in this `Bump` and return an exclusive
/// reference to it.
///
/// ## Errors
///
/// Errors if reserving space for `T` fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.try_alloc("hello");
/// assert_eq!(x, Ok(&mut "hello"));
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn try_alloc<T>(&self, val: T) -> Result<&mut T, AllocErr> {
self.try_alloc_with(|| val)
}
/// Pre-allocate space for an object in this `Bump`, initializes it using
/// the closure, then returns an exclusive reference to it.
///
/// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
/// discussion on the differences between the `_with` suffixed methods and
/// those methods without it, their performance characteristics, and when
/// you might or might not choose a `_with` suffixed method.
///
/// ## Panics
///
/// Panics if reserving space for `T` fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_with(|| "hello");
/// assert_eq!(*x, "hello");
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_with<F, T>(&self, f: F) -> &mut T
where
F: FnOnce() -> T,
{
#[inline(always)]
unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
where
F: FnOnce() -> T,
{
// This function is translated as:
// - allocate space for a T on the stack
// - call f() with the return value being put onto this stack space
// - memcpy from the stack to the heap
//
// Ideally we want LLVM to always realize that doing a stack
// allocation is unnecessary and optimize the code so it writes
// directly into the heap instead. It seems we get it to realize
// this most consistently if we put this critical line into it's
// own function instead of inlining it into the surrounding code.
ptr::write(ptr, f())
}
let layout = Layout::new::<T>();
unsafe {
let p = self.alloc_layout(layout);
let p = p.as_ptr() as *mut T;
inner_writer(p, f);
&mut *p
}
}
/// Tries to pre-allocate space for an object in this `Bump`, initializes
/// it using the closure, then returns an exclusive reference to it.
///
/// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
/// discussion on the differences between the `_with` suffixed methods and
/// those methods without it, their performance characteristics, and when
/// you might or might not choose a `_with` suffixed method.
///
/// ## Errors
///
/// Errors if reserving space for `T` fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.try_alloc_with(|| "hello");
/// assert_eq!(x, Ok(&mut "hello"));
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn try_alloc_with<F, T>(&self, f: F) -> Result<&mut T, AllocErr>
where
F: FnOnce() -> T,
{
#[inline(always)]
unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
where
F: FnOnce() -> T,
{
// This function is translated as:
// - allocate space for a T on the stack
// - call f() with the return value being put onto this stack space
// - memcpy from the stack to the heap
//
// Ideally we want LLVM to always realize that doing a stack
// allocation is unnecessary and optimize the code so it writes
// directly into the heap instead. It seems we get it to realize
// this most consistently if we put this critical line into it's
// own function instead of inlining it into the surrounding code.
ptr::write(ptr, f())
}
//SAFETY: Self-contained:
// `p` is allocated for `T` and then a `T` is written.
let layout = Layout::new::<T>();
let p = self.try_alloc_layout(layout)?;
let p = p.as_ptr() as *mut T;
unsafe {
inner_writer(p, f);
Ok(&mut *p)
}
}
/// Pre-allocates space for a [`Result`] in this `Bump`, initializes it using
/// the closure, then returns an exclusive reference to its `T` if [`Ok`].
///
/// Iff the allocation fails, the closure is not run.
///
/// Iff [`Err`], an allocator rewind is *attempted* and the `E` instance is
/// moved out of the allocator to be consumed or dropped as normal.
///
/// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
/// discussion on the differences between the `_with` suffixed methods and
/// those methods without it, their performance characteristics, and when
/// you might or might not choose a `_with` suffixed method.
///
/// For caveats specific to fallible initialization, see
/// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix).
///
/// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
/// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
/// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
///
/// ## Errors
///
/// Iff the allocation succeeds but `f` fails, that error is forwarded by value.
///
/// ## Panics
///
/// Panics if reserving space for `Result<T, E>` fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_try_with(|| Ok("hello"))?;
/// assert_eq!(*x, "hello");
/// # Result::<_, ()>::Ok(())
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, E>
where
F: FnOnce() -> Result<T, E>,
{
let rewind_footer = self.current_chunk_footer.get();
let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
let mut inner_result_ptr = NonNull::from(self.alloc_with(f));
match unsafe { inner_result_ptr.as_mut() } {
Ok(t) => Ok(unsafe {
//SAFETY:
// The `&mut Result<T, E>` returned by `alloc_with` may be
// lifetime-limited by `E`, but the derived `&mut T` still has
// the same validity as in `alloc_with` since the error variant
// is already ruled out here.
// We could conditionally truncate the allocation here, but
// since it grows backwards, it seems unlikely that we'd get
// any more than the `Result`'s discriminant this way, if
// anything at all.
&mut *(t as *mut _)
}),
Err(e) => unsafe {
// If this result was the last allocation in this arena, we can
// reclaim its space. In fact, sometimes we can do even better
// than simply calling `dealloc` on the result pointer: we can
// reclaim any alignment padding we might have added (which
// `dealloc` cannot do) if we didn't allocate a new chunk for
// this result.
if self.is_last_allocation(inner_result_ptr.cast()) {
let current_footer_p = self.current_chunk_footer.get();
let current_ptr = ¤t_footer_p.as_ref().ptr;
if current_footer_p == rewind_footer {
// It's still the same chunk, so reset the bump pointer
// to its original value upon entry to this method
// (reclaiming any alignment padding we may have
// added).
current_ptr.set(rewind_ptr);
} else {
// We allocated a new chunk for this result.
//
// We know the result is the only allocation in this
// chunk: Any additional allocations since the start of
// this method could only have happened when running
// the initializer function, which is called *after*
// reserving space for this result. Therefore, since we
// already determined via the check above that this
// result was the last allocation, there must not have
// been any other allocations, and this result is the
// only allocation in this chunk.
//
// Because this is the only allocation in this chunk,
// we can reset the chunk's bump finger to the start of
// the chunk.
current_ptr.set(current_footer_p.as_ref().data);
}
}
//SAFETY:
// As we received `E` semantically by value from `f`, we can
// just copy that value here as long as we avoid a double-drop
// (which can't happen as any specific references to the `E`'s
// data in `self` are destroyed when this function returns).
//
// The order between this and the deallocation doesn't matter
// because `Self: !Sync`.
Err(ptr::read(e as *const _))
},
}
}
/// Tries to pre-allocates space for a [`Result`] in this `Bump`,
/// initializes it using the closure, then returns an exclusive reference
/// to its `T` if all [`Ok`].
///
/// Iff the allocation fails, the closure is not run.
///
/// Iff the closure returns [`Err`], an allocator rewind is *attempted* and
/// the `E` instance is moved out of the allocator to be consumed or dropped
/// as normal.
///
/// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
/// discussion on the differences between the `_with` suffixed methods and
/// those methods without it, their performance characteristics, and when
/// you might or might not choose a `_with` suffixed method.
///
/// For caveats specific to fallible initialization, see
/// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix).
///
/// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
/// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
/// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
///
/// ## Errors
///
/// Errors with the [`Alloc`](`AllocOrInitError::Alloc`) variant iff
/// reserving space for `Result<T, E>` fails.
///
/// Iff the allocation succeeds but `f` fails, that error is forwarded by
/// value inside the [`Init`](`AllocOrInitError::Init`) variant.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.try_alloc_try_with(|| Ok("hello"))?;
/// assert_eq!(*x, "hello");
/// # Result::<_, bumpalo::AllocOrInitError<()>>::Ok(())
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn try_alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, AllocOrInitError<E>>
where
F: FnOnce() -> Result<T, E>,
{
let rewind_footer = self.current_chunk_footer.get();
let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
let mut inner_result_ptr = NonNull::from(self.try_alloc_with(f)?);
match unsafe { inner_result_ptr.as_mut() } {
Ok(t) => Ok(unsafe {
//SAFETY:
// The `&mut Result<T, E>` returned by `alloc_with` may be
// lifetime-limited by `E`, but the derived `&mut T` still has
// the same validity as in `alloc_with` since the error variant
// is already ruled out here.
// We could conditionally truncate the allocation here, but
// since it grows backwards, it seems unlikely that we'd get
// any more than the `Result`'s discriminant this way, if
// anything at all.
&mut *(t as *mut _)
}),
Err(e) => unsafe {
// If this result was the last allocation in this arena, we can
// reclaim its space. In fact, sometimes we can do even better
// than simply calling `dealloc` on the result pointer: we can
// reclaim any alignment padding we might have added (which
// `dealloc` cannot do) if we didn't allocate a new chunk for
// this result.
if self.is_last_allocation(inner_result_ptr.cast()) {
let current_footer_p = self.current_chunk_footer.get();
let current_ptr = ¤t_footer_p.as_ref().ptr;
if current_footer_p == rewind_footer {
// It's still the same chunk, so reset the bump pointer
// to its original value upon entry to this method
// (reclaiming any alignment padding we may have
// added).
current_ptr.set(rewind_ptr);
} else {
// We allocated a new chunk for this result.
//
// We know the result is the only allocation in this
// chunk: Any additional allocations since the start of
// this method could only have happened when running
// the initializer function, which is called *after*
// reserving space for this result. Therefore, since we
// already determined via the check above that this
// result was the last allocation, there must not have
// been any other allocations, and this result is the
// only allocation in this chunk.
//
// Because this is the only allocation in this chunk,
// we can reset the chunk's bump finger to the start of
// the chunk.
current_ptr.set(current_footer_p.as_ref().data);
}
}
//SAFETY:
// As we received `E` semantically by value from `f`, we can
// just copy that value here as long as we avoid a double-drop
// (which can't happen as any specific references to the `E`'s
// data in `self` are destroyed when this function returns).
//
// The order between this and the deallocation doesn't matter
// because `Self: !Sync`.
Err(AllocOrInitError::Init(ptr::read(e as *const _)))
},
}
}
/// `Copy` a slice into this `Bump` and return an exclusive reference to
/// the copy.
///
/// ## Panics
///
/// Panics if reserving space for the slice fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_copy(&[1, 2, 3]);
/// assert_eq!(x, &[1, 2, 3]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
where
T: Copy,
{
let layout = Layout::for_value(src);
let dst = self.alloc_layout(layout).cast::<T>();
unsafe {
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
slice::from_raw_parts_mut(dst.as_ptr(), src.len())
}
}
/// `Clone` a slice into this `Bump` and return an exclusive reference to
/// the clone. Prefer [`alloc_slice_copy`](#method.alloc_slice_copy) if `T` is `Copy`.
///
/// ## Panics
///
/// Panics if reserving space for the slice fails.
///
/// ## Example
///
/// ```
/// #[derive(Clone, Debug, Eq, PartialEq)]
/// struct Sheep {
/// name: String,
/// }
///
/// let originals = [
/// Sheep { name: "Alice".into() },
/// Sheep { name: "Bob".into() },
/// Sheep { name: "Cathy".into() },
/// ];
///
/// let bump = bumpalo::Bump::new();
/// let clones = bump.alloc_slice_clone(&originals);
/// assert_eq!(originals, clones);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
where
T: Clone,
{
let layout = Layout::for_value(src);
let dst = self.alloc_layout(layout).cast::<T>();
unsafe {
for (i, val) in src.iter().cloned().enumerate() {
ptr::write(dst.as_ptr().add(i), val);
}
slice::from_raw_parts_mut(dst.as_ptr(), src.len())
}
}
/// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
///
/// ## Panics
///
/// Panics if reserving space for the string fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let hello = bump.alloc_str("hello world");
/// assert_eq!("hello world", hello);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_str(&self, src: &str) -> &mut str {
let buffer = self.alloc_slice_copy(src.as_bytes());
unsafe {
// This is OK, because it already came in as str, so it is guaranteed to be utf8
str::from_utf8_unchecked_mut(buffer)
}
}
/// Allocates a new slice of size `len` into this `Bump` and returns an
/// exclusive reference to the copy.
///
/// The elements of the slice are initialized using the supplied closure.
/// The closure argument is the position in the slice.
///
/// ## Panics
///
/// Panics if reserving space for the slice fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_fill_with(5, |i| 5 * (i + 1));
/// assert_eq!(x, &[5, 10, 15, 20, 25]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
where
F: FnMut(usize) -> T,
{
let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
let dst = self.alloc_layout(layout).cast::<T>();
unsafe {
for i in 0..len {
ptr::write(dst.as_ptr().add(i), f(i));
}
let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
debug_assert_eq!(Layout::for_value(result), layout);
result
}
}
/// Allocates a new slice of size `len` into this `Bump` and returns an
/// exclusive reference to the copy.
///
/// All elements of the slice are initialized to `value`.
///
/// ## Panics
///
/// Panics if reserving space for the slice fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_fill_copy(5, 42);
/// assert_eq!(x, &[42, 42, 42, 42, 42]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
self.alloc_slice_fill_with(len, |_| value)
}
/// Allocates a new slice of size `len` slice into this `Bump` and return an
/// exclusive reference to the copy.
///
/// All elements of the slice are initialized to `value.clone()`.
///
/// ## Panics
///
/// Panics if reserving space for the slice fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let s: String = "Hello Bump!".to_string();
/// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
/// assert_eq!(x.len(), 2);
/// assert_eq!(&x[0], &s);
/// assert_eq!(&x[1], &s);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
self.alloc_slice_fill_with(len, |_| value.clone())
}
/// Allocates a new slice of size `len` slice into this `Bump` and return an
/// exclusive reference to the copy.
///
/// The elements are initialized using the supplied iterator.
///
/// ## Panics
///
/// Panics if reserving space for the slice fails, or if the supplied
/// iterator returns fewer elements than it promised.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
/// assert_eq!(x, [4, 9, 25]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
where
I: IntoIterator<Item = T>,
I::IntoIter: ExactSizeIterator,
{
let mut iter = iter.into_iter();
self.alloc_slice_fill_with(iter.len(), |_| {
iter.next().expect("Iterator supplied too few elements")
})
}
/// Allocates a new slice of size `len` slice into this `Bump` and return an
/// exclusive reference to the copy.
///
/// All elements of the slice are initialized to [`T::default()`].
///
/// [`T::default()`]: https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
///
/// ## Panics
///
/// Panics if reserving space for the slice fails.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let x = bump.alloc_slice_fill_default::<u32>(5);
/// assert_eq!(x, &[0, 0, 0, 0, 0]);
/// ```
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
self.alloc_slice_fill_with(len, |_| T::default())
}
/// Allocate space for an object with the given `Layout`.
///
/// The returned pointer points at uninitialized memory, and should be
/// initialized with
/// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
///
/// # Panics
///
/// Panics if reserving space matching `layout` fails.
#[inline(always)]
pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
self.try_alloc_layout(layout).unwrap_or_else(|_| oom())
}
/// Attempts to allocate space for an object with the given `Layout` or else returns
/// an `Err`.
///
/// The returned pointer points at uninitialized memory, and should be
/// initialized with
/// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
///
/// # Errors
///
/// Errors if reserving space matching `layout` fails.
#[inline(always)]
pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
if let Some(p) = self.try_alloc_layout_fast(layout) {
Ok(p)
} else {
self.alloc_layout_slow(layout).ok_or(AllocErr)
}
}
#[inline(always)]
fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
// We don't need to check for ZSTs here since they will automatically
// be handled properly: the pointer will be bumped by zero bytes,
// modulo alignment. This keeps the fast path optimized for non-ZSTs,
// which are much more common.
unsafe {
let footer = self.current_chunk_footer.get();
let footer = footer.as_ref();
let ptr = footer.ptr.get().as_ptr();
let start = footer.data.as_ptr();
debug_assert!(start <= ptr);
debug_assert!(ptr as *const u8 <= footer as *const _ as *const u8);
if (ptr as usize) < layout.size() {
return None;
}
let ptr = ptr.wrapping_sub(layout.size());
let rem = ptr as usize % layout.align();
let aligned_ptr = ptr.wrapping_sub(rem);
if aligned_ptr >= start {
let aligned_ptr = NonNull::new_unchecked(aligned_ptr as *mut u8);
footer.ptr.set(aligned_ptr);
Some(aligned_ptr)
} else {
None
}
}
}
/// Gets the remaining capacity in the current chunk (in bytes).
///
/// ## Example
///
/// ```
/// use bumpalo::Bump;
///
/// let bump = Bump::with_capacity(100);
///
/// let capacity = bump.chunk_capacity();
/// assert!(capacity >= 100);
/// ```
pub fn chunk_capacity(&self) -> usize {
let current_footer = self.current_chunk_footer.get();
let current_footer = unsafe { current_footer.as_ref() };
current_footer as *const _ as usize - current_footer.data.as_ptr() as usize
}
/// Slow path allocation for when we need to allocate a new chunk from the
/// parent bump set because there isn't enough room in our current chunk.
#[inline(never)]
fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> {
unsafe {
let size = layout.size();
let allocation_limit_remaining = self.allocation_limit_remaining();
// Get a new chunk from the global allocator.
let current_footer = self.current_chunk_footer.get();
let current_layout = current_footer.as_ref().layout;
// By default, we want our new chunk to be about twice as big
// as the previous chunk. If the global allocator refuses it,
// we try to divide it by half until it works or the requested
// size is smaller than the default footer size.
let min_new_chunk_size = layout.size().max(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
let mut base_size = (current_layout.size() - FOOTER_SIZE)
.checked_mul(2)?
.max(min_new_chunk_size);
let chunk_memory_details = iter::from_fn(|| {
let bypass_min_chunk_size_for_small_limits = match self.allocation_limit() {
Some(limit)
if layout.size() < limit
&& base_size >= layout.size()
&& limit < DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
&& self.allocated_bytes() == 0 =>
{
true
}
_ => false,
};
if base_size >= min_new_chunk_size || bypass_min_chunk_size_for_small_limits {
let size = base_size;
base_size = base_size / 2;
Bump::new_chunk_memory_details(Some(size), layout)
} else {
None
}
});
let new_footer = chunk_memory_details
.filter_map(|chunk_memory_details| {
if Bump::chunk_fits_under_limit(
allocation_limit_remaining,
chunk_memory_details,
) {
Bump::new_chunk(chunk_memory_details, layout, current_footer)
} else {
None
}
})
.next()?;
debug_assert_eq!(
new_footer.as_ref().data.as_ptr() as usize % layout.align(),
0
);
// Set the new chunk as our new current chunk.
self.current_chunk_footer.set(new_footer);
let new_footer = new_footer.as_ref();
// Move the bump ptr finger down to allocate room for `val`. We know
// this can't overflow because we successfully allocated a chunk of
// at least the requested size.
let mut ptr = new_footer.ptr.get().as_ptr().sub(size);
// Round the pointer down to the requested alignment.
ptr = ptr.sub(ptr as usize % layout.align());
debug_assert!(
ptr as *const _ <= new_footer,
"{:p} <= {:p}",
ptr,
new_footer
);
let ptr = NonNull::new_unchecked(ptr as *mut u8);
new_footer.ptr.set(ptr);
// Return a pointer to the freshly allocated region in this chunk.
Some(ptr)
}
}
/// Returns an iterator over each chunk of allocated memory that
/// this arena has bump allocated into.
///
/// The chunks are returned ordered by allocation time, with the most
/// recently allocated chunk being returned first, and the least recently
/// allocated chunk being returned last.
///
/// The values inside each chunk are also ordered by allocation time, with
/// the most recent allocation being earlier in the slice, and the least
/// recent allocation being towards the end of the slice.
///
/// ## Safety
///
/// Because this method takes `&mut self`, we know that the bump arena
/// reference is unique and therefore there aren't any active references to
/// any of the objects we've allocated in it either. This potential aliasing
/// of exclusive references is one common footgun for unsafe code that we
/// don't need to worry about here.
///
/// However, there could be regions of uninitialized memory used as padding
/// between allocations, which is why this iterator has items of type
/// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
///
/// The only way to guarantee that there is no padding between allocations
/// or within allocated objects is if all of these properties hold:
///
/// 1. Every object allocated in this arena has the same alignment,
/// and that alignment is at most 16.
/// 2. Every object's size is a multiple of its alignment.
/// 3. None of the objects allocated in this arena contain any internal
/// padding.
///
/// If you want to use this `iter_allocated_chunks` method, it is *your*
/// responsibility to ensure that these properties hold before calling
/// `MaybeUninit::assume_init` or otherwise reading the returned values.
///
/// Finally, you must also ensure that any values allocated into the bump
/// arena have not had their `Drop` implementations called on them,
/// e.g. after dropping a [`bumpalo::boxed::Box<T>`][crate::boxed::Box].
///
/// ## Example
///
/// ```
/// let mut bump = bumpalo::Bump::new();
///
/// // Allocate a bunch of `i32`s in this bump arena, potentially causing
/// // additional memory chunks to be reserved.
/// for i in 0..10000 {
/// bump.alloc(i);
/// }
///
/// // Iterate over each chunk we've bump allocated into. This is safe
/// // because we have only allocated `i32`s in this arena, which fulfills
/// // the above requirements.
/// for ch in bump.iter_allocated_chunks() {
/// println!("Used a chunk that is {} bytes long", ch.len());
/// println!("The first byte is {:?}", unsafe {
/// ch[0].assume_init()
/// });
/// }
///
/// // Within a chunk, allocations are ordered from most recent to least
/// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
/// // through the chunk's data, we get them in the order 'c', then 'b',
/// // then 'a'.
///
/// bump.reset();
/// bump.alloc(b'a');
/// bump.alloc(b'b');
/// bump.alloc(b'c');
///
/// assert_eq!(bump.iter_allocated_chunks().count(), 1);
/// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
/// assert_eq!(chunk.len(), 3);
///
/// // Safe because we've only allocated `u8`s in this arena, which
/// // fulfills the above requirements.
/// unsafe {
/// assert_eq!(chunk[0].assume_init(), b'c');
/// assert_eq!(chunk[1].assume_init(), b'b');
/// assert_eq!(chunk[2].assume_init(), b'a');
/// }
/// ```
pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> {
// SAFE: Ensured by mutable borrow of `self`.
let raw = unsafe { self.iter_allocated_chunks_raw() };
ChunkIter {
raw,
bump: PhantomData,
}
}
/// Returns an iterator over raw pointers to chunks of allocated memory that
/// this arena has bump allocated into.
///
/// This is an unsafe version of [`iter_allocated_chunks()`](Bump::iter_allocated_chunks),
/// with the caller responsible for safe usage of the returned pointers as
/// well as ensuring that the iterator is not invalidated by new
/// allocations.
///
/// ## Safety
///
/// Allocations from this arena must not be performed while the returned
/// iterator is alive. If reading the chunk data (or casting to a reference)
/// the caller must ensure that there exist no mutable references to
/// previously allocated data.
///
/// In addition, all of the caveats when reading the chunk data from
/// [`iter_allocated_chunks()`](Bump::iter_allocated_chunks) still apply.
pub unsafe fn iter_allocated_chunks_raw(&self) -> ChunkRawIter<'_> {
ChunkRawIter {
footer: self.current_chunk_footer.get(),
bump: PhantomData,
}
}
/// Calculates the number of bytes currently allocated across all chunks in
/// this bump arena.
///
/// If you allocate types of different alignments or types with
/// larger-than-typical alignment in the same arena, some padding
/// bytes might get allocated in the bump arena. Note that those padding
/// bytes will add to this method's resulting sum, so you cannot rely
/// on it only counting the sum of the sizes of the things
/// you've allocated in the arena.
///
/// ## Example
///
/// ```
/// let bump = bumpalo::Bump::new();
/// let _x = bump.alloc_slice_fill_default::<u32>(5);
/// let bytes = bump.allocated_bytes();
/// assert!(bytes >= core::mem::size_of::<u32>() * 5);
/// ```
pub fn allocated_bytes(&self) -> usize {
let footer = self.current_chunk_footer.get();
unsafe { footer.as_ref().allocated_bytes }
}
#[inline]
unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
let footer = self.current_chunk_footer.get();
let footer = footer.as_ref();
footer.ptr.get() == ptr
}
#[inline]
unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) {
// If the pointer is the last allocation we made, we can reuse the bytes,
// otherwise they are simply leaked -- at least until somebody calls reset().
if self.is_last_allocation(ptr) {
let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size()));
self.current_chunk_footer.get().as_ref().ptr.set(ptr);
}
}
#[inline]
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<u8>, AllocErr> {
let old_size = old_layout.size();
let new_size = new_layout.size();
let align_is_compatible = old_layout.align() >= new_layout.align();
if !align_is_compatible {
return Err(AllocErr);
}
// This is how much space we would *actually* reclaim while satisfying
// the requested alignment.
let delta = round_down_to(old_size - new_size, new_layout.align());
if self.is_last_allocation(ptr)
// Only reclaim the excess space (which requires a copy) if it
// is worth it: we are actually going to recover "enough" space
// and we can do a non-overlapping copy.
&& delta >= old_size / 2
{
let footer = self.current_chunk_footer.get();
let footer = footer.as_ref();
// NB: new_ptr is aligned, because ptr *has to* be aligned, and we
// made sure delta is aligned.
let new_ptr = NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta));
footer.ptr.set(new_ptr);
// NB: we know it is non-overlapping because of the size check
// in the `if` condition.
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
return Ok(new_ptr);
} else {
return Ok(ptr);
}
}
#[inline]
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<u8>, AllocErr> {
let old_size = old_layout.size();
let new_size = new_layout.size();
let align_is_compatible = old_layout.align() >= new_layout.align();
if align_is_compatible && self.is_last_allocation(ptr) {
// Try to allocate the delta size within this same block so we can
// reuse the currently allocated space.
let delta = new_size - old_size;
if let Some(p) =
self.try_alloc_layout_fast(layout_from_size_align(delta, old_layout.align()))
{
ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
return Ok(p);
}
}
// Fallback: do a fresh allocation and copy the existing data into it.
let new_ptr = self.try_alloc_layout(new_layout)?;
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
Ok(new_ptr)
}
}
/// An iterator over each chunk of allocated memory that
/// an arena has bump allocated into.
///
/// The chunks are returned ordered by allocation time, with the most recently
/// allocated chunk being returned first.
///
/// The values inside each chunk are also ordered by allocation time, with the most
/// recent allocation being earlier in the slice.
///
/// This struct is created by the [`iter_allocated_chunks`] method on
/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
///
/// [`Bump`]: struct.Bump.html
/// [`iter_allocated_chunks`]: struct.Bump.html#method.iter_allocated_chunks
#[derive(Debug)]
pub struct ChunkIter<'a> {
raw: ChunkRawIter<'a>,
bump: PhantomData<&'a mut Bump>,
}
impl<'a> Iterator for ChunkIter<'a> {
type Item = &'a [mem::MaybeUninit<u8>];
fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> {
unsafe {
let (ptr, len) = self.raw.next()?;
let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
Some(slice)
}
}
}
impl<'a> iter::FusedIterator for ChunkIter<'a> {}
/// An iterator over raw pointers to chunks of allocated memory that this
/// arena has bump allocated into.
///
/// See [`ChunkIter`] for details regarding the returned chunks.
///
/// This struct is created by the [`iter_allocated_chunks_raw`] method on
/// [`Bump`]. See that function for a safety description regarding reading from
/// the returned items.
///
/// [`Bump`]: struct.Bump.html
/// [`iter_allocated_chunks_raw`]: struct.Bump.html#method.iter_allocated_chunks_raw
#[derive(Debug)]
pub struct ChunkRawIter<'a> {
footer: NonNull<ChunkFooter>,
bump: PhantomData<&'a Bump>,
}
impl Iterator for ChunkRawIter<'_> {
type Item = (*mut u8, usize);
fn next(&mut self) -> Option<(*mut u8, usize)> {
unsafe {
let foot = self.footer.as_ref();
if foot.is_empty() {
return None;
}
let (ptr, len) = foot.as_raw_parts();
self.footer = foot.prev.get();
Some((ptr as *mut u8, len))
}
}
}
impl iter::FusedIterator for ChunkRawIter<'_> {}
#[inline(never)]
#[cold]
fn oom() -> ! {
panic!("out of memory")
}
unsafe impl<'a> alloc::Alloc for &'a Bump {
#[inline(always)]
unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
self.try_alloc_layout(layout)
}
#[inline]
unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
Bump::dealloc(self, ptr, layout)
}
#[inline]
unsafe fn realloc(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize,
) -> Result<NonNull<u8>, AllocErr> {
let old_size = layout.size();
if old_size == 0 {
return self.try_alloc_layout(layout);
}
let new_layout = layout_from_size_align(new_size, layout.align());
if new_size <= old_size {
self.shrink(ptr, layout, new_layout)
} else {
self.grow(ptr, layout, new_layout)
}
}
}
#[cfg(feature = "allocator_api")]
unsafe impl<'a> Allocator for &'a Bump {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.try_alloc_layout(layout)
.map(|p| NonNull::slice_from_raw_parts(p, layout.size()))
.map_err(|_| AllocError)
}
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
Bump::dealloc(self, ptr, layout)
}
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
Bump::shrink(self, ptr, old_layout, new_layout)
.map(|p| NonNull::slice_from_raw_parts(p, new_layout.size()))
.map_err(|_| AllocError)
}
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
Bump::grow(self, ptr, old_layout, new_layout)
.map(|p| NonNull::slice_from_raw_parts(p, new_layout.size()))
.map_err(|_| AllocError)
}
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
let mut ptr = self.grow(ptr, old_layout, new_layout)?;
ptr.as_mut()[old_layout.size()..].fill(0);
Ok(ptr)
}
}
// NB: Only tests which require private types, fields, or methods should be in
// here. Anything that can just be tested via public API surface should be in
// `bumpalo/tests/all/*`.
#[cfg(test)]
mod tests {
use super::*;
// Uses private type `ChunkFooter`.
#[test]
fn chunk_footer_is_five_words() {
assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 6);
}
// Uses private `alloc` module.
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_realloc() {
use crate::alloc::Alloc;
unsafe {
const CAPACITY: usize = 1024 - OVERHEAD;
let mut b = Bump::with_capacity(CAPACITY);
// `realloc` doesn't shrink allocations that aren't "worth it".
let layout = Layout::from_size_align(100, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 51).unwrap();
assert_eq!(p, q);
b.reset();
// `realloc` will shrink allocations that are "worth it".
let layout = Layout::from_size_align(100, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 50).unwrap();
assert!(p != q);
b.reset();
// `realloc` will reuse the last allocation when growing.
let layout = Layout::from_size_align(10, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 11).unwrap();
assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
b.reset();
// `realloc` will allocate a new chunk when growing the last
// allocation, if need be.
let layout = Layout::from_size_align(1, 1).unwrap();
let p = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY);
b = Bump::with_capacity(CAPACITY);
// `realloc` will allocate and copy when reallocating anything that
// wasn't the last allocation.
let layout = Layout::from_size_align(1, 1).unwrap();
let p = b.alloc_layout(layout);
let _ = b.alloc_layout(layout);
let q = (&b).realloc(p, layout, 2).unwrap();
assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
b.reset();
}
}
// Uses our private `alloc` module.
#[test]
fn invalid_read() {
use alloc::Alloc;
let mut b = &Bump::new();
unsafe {
let l1 = Layout::from_size_align(12000, 4).unwrap();
let p1 = Alloc::alloc(&mut b, l1).unwrap();
let l2 = Layout::from_size_align(1000, 4).unwrap();
Alloc::alloc(&mut b, l2).unwrap();
let p1 = b.realloc(p1, l1, 24000).unwrap();
let l3 = Layout::from_size_align(24000, 4).unwrap();
b.realloc(p1, l3, 48000).unwrap();
}
}
}