1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
use crate::bforest;
use crate::entity::SecondaryMap;
use crate::ir::instructions::BranchInfo;
use crate::ir::{Block, Function, Inst};
use crate::timing;
use core::mem;
#[derive(Debug, PartialEq, Eq)]
pub struct BlockPredecessor {
pub block: Block,
pub inst: Inst,
}
impl BlockPredecessor {
pub fn new(block: Block, inst: Inst) -> Self {
Self { block, inst }
}
}
#[derive(Clone, Default)]
struct CFGNode {
pub predecessors: bforest::Map<Inst, Block>,
pub successors: bforest::Set<Block>,
}
pub struct ControlFlowGraph {
data: SecondaryMap<Block, CFGNode>,
pred_forest: bforest::MapForest<Inst, Block>,
succ_forest: bforest::SetForest<Block>,
valid: bool,
}
impl ControlFlowGraph {
pub fn new() -> Self {
Self {
data: SecondaryMap::new(),
valid: false,
pred_forest: bforest::MapForest::new(),
succ_forest: bforest::SetForest::new(),
}
}
pub fn clear(&mut self) {
self.data.clear();
self.pred_forest.clear();
self.succ_forest.clear();
self.valid = false;
}
pub fn with_function(func: &Function) -> Self {
let mut cfg = Self::new();
cfg.compute(func);
cfg
}
pub fn compute(&mut self, func: &Function) {
let _tt = timing::flowgraph();
self.clear();
self.data.resize(func.dfg.num_blocks());
for block in &func.layout {
self.compute_block(func, block);
}
self.valid = true;
}
fn compute_block(&mut self, func: &Function, block: Block) {
for inst in func.layout.block_likely_branches(block) {
match func.dfg.analyze_branch(inst) {
BranchInfo::SingleDest(dest, _) => {
self.add_edge(block, inst, dest);
}
BranchInfo::Table(jt, dest) => {
if let Some(dest) = dest {
self.add_edge(block, inst, dest);
}
for dest in func.jump_tables[jt].iter() {
self.add_edge(block, inst, *dest);
}
}
BranchInfo::NotABranch => {}
}
}
}
fn invalidate_block_successors(&mut self, block: Block) {
let mut successors = mem::replace(&mut self.data[block].successors, Default::default());
for succ in successors.iter(&self.succ_forest) {
self.data[succ]
.predecessors
.retain(&mut self.pred_forest, |_, &mut e| e != block);
}
successors.clear(&mut self.succ_forest);
}
pub fn recompute_block(&mut self, func: &Function, block: Block) {
debug_assert!(self.is_valid());
self.invalidate_block_successors(block);
self.compute_block(func, block);
}
fn add_edge(&mut self, from: Block, from_inst: Inst, to: Block) {
self.data[from]
.successors
.insert(to, &mut self.succ_forest, &());
self.data[to]
.predecessors
.insert(from_inst, from, &mut self.pred_forest, &());
}
pub fn pred_iter(&self, block: Block) -> PredIter {
PredIter(self.data[block].predecessors.iter(&self.pred_forest))
}
pub fn succ_iter(&self, block: Block) -> SuccIter {
debug_assert!(self.is_valid());
self.data[block].successors.iter(&self.succ_forest)
}
pub fn is_valid(&self) -> bool {
self.valid
}
}
pub struct PredIter<'a>(bforest::MapIter<'a, Inst, Block>);
impl<'a> Iterator for PredIter<'a> {
type Item = BlockPredecessor;
fn next(&mut self) -> Option<BlockPredecessor> {
self.0.next().map(|(i, e)| BlockPredecessor::new(e, i))
}
}
pub type SuccIter<'a> = bforest::SetIter<'a, Block>;
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{types, Function, InstBuilder};
use alloc::vec::Vec;
#[test]
fn empty() {
let func = Function::new();
ControlFlowGraph::with_function(&func);
}
#[test]
fn no_predecessors() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
func.layout.append_block(block0);
func.layout.append_block(block1);
func.layout.append_block(block2);
let cfg = ControlFlowGraph::with_function(&func);
let mut fun_blocks = func.layout.blocks();
for block in func.layout.blocks() {
assert_eq!(block, fun_blocks.next().unwrap());
assert_eq!(cfg.pred_iter(block).count(), 0);
assert_eq!(cfg.succ_iter(block).count(), 0);
}
}
#[test]
fn branches_and_jumps() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let cond = func.dfg.append_block_param(block0, types::I32);
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let br_block0_block2;
let br_block1_block1;
let jmp_block0_block1;
let jmp_block1_block2;
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
br_block0_block2 = cur.ins().brnz(cond, block2, &[]);
jmp_block0_block1 = cur.ins().jump(block1, &[]);
cur.insert_block(block1);
br_block1_block1 = cur.ins().brnz(cond, block1, &[]);
jmp_block1_block2 = cur.ins().jump(block2, &[]);
cur.insert_block(block2);
}
let mut cfg = ControlFlowGraph::with_function(&func);
{
let block0_predecessors = cfg.pred_iter(block0).collect::<Vec<_>>();
let block1_predecessors = cfg.pred_iter(block1).collect::<Vec<_>>();
let block2_predecessors = cfg.pred_iter(block2).collect::<Vec<_>>();
let block0_successors = cfg.succ_iter(block0).collect::<Vec<_>>();
let block1_successors = cfg.succ_iter(block1).collect::<Vec<_>>();
let block2_successors = cfg.succ_iter(block2).collect::<Vec<_>>();
assert_eq!(block0_predecessors.len(), 0);
assert_eq!(block1_predecessors.len(), 2);
assert_eq!(block2_predecessors.len(), 2);
assert_eq!(
block1_predecessors.contains(&BlockPredecessor::new(block0, jmp_block0_block1)),
true
);
assert_eq!(
block1_predecessors.contains(&BlockPredecessor::new(block1, br_block1_block1)),
true
);
assert_eq!(
block2_predecessors.contains(&BlockPredecessor::new(block0, br_block0_block2)),
true
);
assert_eq!(
block2_predecessors.contains(&BlockPredecessor::new(block1, jmp_block1_block2)),
true
);
assert_eq!(block0_successors, [block1, block2]);
assert_eq!(block1_successors, [block1, block2]);
assert_eq!(block2_successors, []);
}
func.dfg.replace(br_block0_block2).brnz(cond, block1, &[]);
func.dfg.replace(jmp_block0_block1).return_(&[]);
cfg.recompute_block(&mut func, block0);
let br_block0_block1 = br_block0_block2;
{
let block0_predecessors = cfg.pred_iter(block0).collect::<Vec<_>>();
let block1_predecessors = cfg.pred_iter(block1).collect::<Vec<_>>();
let block2_predecessors = cfg.pred_iter(block2).collect::<Vec<_>>();
let block0_successors = cfg.succ_iter(block0);
let block1_successors = cfg.succ_iter(block1);
let block2_successors = cfg.succ_iter(block2);
assert_eq!(block0_predecessors.len(), 0);
assert_eq!(block1_predecessors.len(), 2);
assert_eq!(block2_predecessors.len(), 1);
assert_eq!(
block1_predecessors.contains(&BlockPredecessor::new(block0, br_block0_block1)),
true
);
assert_eq!(
block1_predecessors.contains(&BlockPredecessor::new(block1, br_block1_block1)),
true
);
assert_eq!(
block2_predecessors.contains(&BlockPredecessor::new(block0, br_block0_block2)),
false
);
assert_eq!(
block2_predecessors.contains(&BlockPredecessor::new(block1, jmp_block1_block2)),
true
);
assert_eq!(block0_successors.collect::<Vec<_>>(), [block1]);
assert_eq!(block1_successors.collect::<Vec<_>>(), [block1, block2]);
assert_eq!(block2_successors.collect::<Vec<_>>(), []);
}
}
}