1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.

use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::types::I32;
use crate::ir::{self, InstBuilder, InstructionData, MemFlags};
use crate::isa::TargetIsa;

mod globalvalue;
mod heap;
mod table;

use self::globalvalue::expand_global_value;
use self::heap::expand_heap_addr;
use self::table::expand_table_addr;

/// Perform a simple legalization by expansion of the function, without
/// platform-specific transforms.
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::BranchIcmp {
                    opcode: ir::Opcode::BrIcmp,
                    cond,
                    destination,
                    ref args,
                } => {
                    let a = args.get(0, &pos.func.dfg.value_lists).unwrap();
                    let b = args.get(1, &pos.func.dfg.value_lists).unwrap();
                    let block_args = args.as_slice(&pos.func.dfg.value_lists)[2..].to_vec();

                    let old_block = pos.func.layout.pp_block(inst);
                    pos.func.dfg.clear_results(inst);

                    let icmp_res = pos.func.dfg.replace(inst).icmp(cond, a, b);
                    let mut pos = FuncCursor::new(pos.func).after_inst(inst);
                    pos.use_srcloc(inst);
                    pos.ins().brnz(icmp_res, destination, &block_args);

                    cfg.recompute_block(pos.func, destination);
                    cfg.recompute_block(pos.func, old_block);
                }
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    imm,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, imm),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                // bitops
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::BandImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).band(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::BorImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).bor(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::BxorImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).bxor(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::IaddImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).iadd(arg, imm);
                }

                // bitshifting
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::IshlImm,
                    arg,
                    imm,
                } => {
                    let imm = pos.ins().iconst(I32, imm);
                    pos.func.dfg.replace(inst).ishl(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::RotlImm,
                    arg,
                    imm,
                } => {
                    let imm = pos.ins().iconst(I32, imm);
                    pos.func.dfg.replace(inst).rotl(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::RotrImm,
                    arg,
                    imm,
                } => {
                    let imm = pos.ins().iconst(I32, imm);
                    pos.func.dfg.replace(inst).rotr(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::SshrImm,
                    arg,
                    imm,
                } => {
                    let imm = pos.ins().iconst(I32, imm);
                    pos.func.dfg.replace(inst).sshr(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::UshrImm,
                    arg,
                    imm,
                } => {
                    let imm = pos.ins().iconst(I32, imm);
                    pos.func.dfg.replace(inst).ushr(arg, imm);
                }

                // math
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::IrsubImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).isub(imm, arg); // note: arg order reversed
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::ImulImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).imul(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::SdivImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).sdiv(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::SremImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).srem(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::UdivImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).udiv(arg, imm);
                }
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::UremImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).urem(arg, imm);
                }

                // comparisons
                InstructionData::BinaryImm64 {
                    opcode: ir::Opcode::IfcmpImm,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).ifcmp(arg, imm);
                }
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let ty = pos.func.dfg.value_type(arg);
                    let imm = pos.ins().iconst(ty, imm);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }
}

/// Custom expansion for conditional trap instructions.
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    opcode: ir::Opcode,
    arg: ir::Value,
    code: ir::TrapCode,
) {
    // Parse the instruction.
    let trapz = match opcode {
        ir::Opcode::Trapz => true,
        ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}