1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//! A loop analysis represented as mappings of loops to their header Block
//! and parent in the loop tree.

use crate::dominator_tree::DominatorTree;
use crate::entity::entity_impl;
use crate::entity::SecondaryMap;
use crate::entity::{Keys, PrimaryMap};
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir::{Block, Function, Layout};
use crate::packed_option::PackedOption;
use crate::timing;
use alloc::vec::Vec;

/// A opaque reference to a code loop.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Loop(u32);
entity_impl!(Loop, "loop");

/// Loop tree information for a single function.
///
/// Loops are referenced by the Loop object, and for each loop you can access its header block,
/// its eventual parent in the loop tree and all the block belonging to the loop.
pub struct LoopAnalysis {
    loops: PrimaryMap<Loop, LoopData>,
    block_loop_map: SecondaryMap<Block, PackedOption<Loop>>,
    valid: bool,
}

struct LoopData {
    header: Block,
    parent: PackedOption<Loop>,
}

impl LoopData {
    /// Creates a `LoopData` object with the loop header and its eventual parent in the loop tree.
    pub fn new(header: Block, parent: Option<Loop>) -> Self {
        Self {
            header,
            parent: parent.into(),
        }
    }
}

/// Methods for querying the loop analysis.
impl LoopAnalysis {
    /// Allocate a new blank loop analysis struct. Use `compute` to compute the loop analysis for
    /// a function.
    pub fn new() -> Self {
        Self {
            valid: false,
            loops: PrimaryMap::new(),
            block_loop_map: SecondaryMap::new(),
        }
    }

    /// Returns all the loops contained in a function.
    pub fn loops(&self) -> Keys<Loop> {
        self.loops.keys()
    }

    /// Returns the header block of a particular loop.
    ///
    /// The characteristic property of a loop header block is that it dominates some of its
    /// predecessors.
    pub fn loop_header(&self, lp: Loop) -> Block {
        self.loops[lp].header
    }

    /// Return the eventual parent of a loop in the loop tree.
    pub fn loop_parent(&self, lp: Loop) -> Option<Loop> {
        self.loops[lp].parent.expand()
    }

    /// Determine if a Block belongs to a loop by running a finger along the loop tree.
    ///
    /// Returns `true` if `block` is in loop `lp`.
    pub fn is_in_loop(&self, block: Block, lp: Loop) -> bool {
        let block_loop = self.block_loop_map[block];
        match block_loop.expand() {
            None => false,
            Some(block_loop) => self.is_child_loop(block_loop, lp),
        }
    }

    /// Determines if a loop is contained in another loop.
    ///
    /// `is_child_loop(child,parent)` returns `true` if and only if `child` is a child loop of
    /// `parent` (or `child == parent`).
    pub fn is_child_loop(&self, child: Loop, parent: Loop) -> bool {
        let mut finger = Some(child);
        while let Some(finger_loop) = finger {
            if finger_loop == parent {
                return true;
            }
            finger = self.loop_parent(finger_loop);
        }
        false
    }
}

impl LoopAnalysis {
    /// Detects the loops in a function. Needs the control flow graph and the dominator tree.
    pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph, domtree: &DominatorTree) {
        let _tt = timing::loop_analysis();
        self.loops.clear();
        self.block_loop_map.clear();
        self.block_loop_map.resize(func.dfg.num_blocks());
        self.find_loop_headers(cfg, domtree, &func.layout);
        self.discover_loop_blocks(cfg, domtree, &func.layout);
        self.valid = true;
    }

    /// Check if the loop analysis is in a valid state.
    ///
    /// Note that this doesn't perform any kind of validity checks. It simply checks if the
    /// `compute()` method has been called since the last `clear()`. It does not check that the
    /// loop analysis is consistent with the CFG.
    pub fn is_valid(&self) -> bool {
        self.valid
    }

    /// Clear all the data structures contained in the loop analysis. This will leave the
    /// analysis in a similar state to a context returned by `new()` except that allocated
    /// memory be retained.
    pub fn clear(&mut self) {
        self.loops.clear();
        self.block_loop_map.clear();
        self.valid = false;
    }

    // Traverses the CFG in reverse postorder and create a loop object for every block having a
    // back edge.
    fn find_loop_headers(
        &mut self,
        cfg: &ControlFlowGraph,
        domtree: &DominatorTree,
        layout: &Layout,
    ) {
        // We traverse the CFG in reverse postorder
        for &block in domtree.cfg_postorder().iter().rev() {
            for BlockPredecessor {
                inst: pred_inst, ..
            } in cfg.pred_iter(block)
            {
                // If the block dominates one of its predecessors it is a back edge
                if domtree.dominates(block, pred_inst, layout) {
                    // This block is a loop header, so we create its associated loop
                    let lp = self.loops.push(LoopData::new(block, None));
                    self.block_loop_map[block] = lp.into();
                    break;
                    // We break because we only need one back edge to identify a loop header.
                }
            }
        }
    }

    // Intended to be called after `find_loop_headers`. For each detected loop header,
    // discovers all the block belonging to the loop and its inner loops. After a call to this
    // function, the loop tree is fully constructed.
    fn discover_loop_blocks(
        &mut self,
        cfg: &ControlFlowGraph,
        domtree: &DominatorTree,
        layout: &Layout,
    ) {
        let mut stack: Vec<Block> = Vec::new();
        // We handle each loop header in reverse order, corresponding to a pseudo postorder
        // traversal of the graph.
        for lp in self.loops().rev() {
            for BlockPredecessor {
                block: pred,
                inst: pred_inst,
            } in cfg.pred_iter(self.loops[lp].header)
            {
                // We follow the back edges
                if domtree.dominates(self.loops[lp].header, pred_inst, layout) {
                    stack.push(pred);
                }
            }
            while let Some(node) = stack.pop() {
                let continue_dfs: Option<Block>;
                match self.block_loop_map[node].expand() {
                    None => {
                        // The node hasn't been visited yet, we tag it as part of the loop
                        self.block_loop_map[node] = PackedOption::from(lp);
                        continue_dfs = Some(node);
                    }
                    Some(node_loop) => {
                        // We copy the node_loop into a mutable reference passed along the while
                        let mut node_loop = node_loop;
                        // The node is part of a loop, which can be lp or an inner loop
                        let mut node_loop_parent_option = self.loops[node_loop].parent;
                        while let Some(node_loop_parent) = node_loop_parent_option.expand() {
                            if node_loop_parent == lp {
                                // We have encountered lp so we stop (already visited)
                                break;
                            } else {
                                //
                                node_loop = node_loop_parent;
                                // We lookup the parent loop
                                node_loop_parent_option = self.loops[node_loop].parent;
                            }
                        }
                        // Now node_loop_parent is either:
                        // - None and node_loop is an new inner loop of lp
                        // - Some(...) and the initial node_loop was a known inner loop of lp
                        match node_loop_parent_option.expand() {
                            Some(_) => continue_dfs = None,
                            None => {
                                if node_loop != lp {
                                    self.loops[node_loop].parent = lp.into();
                                    continue_dfs = Some(self.loops[node_loop].header)
                                } else {
                                    // If lp is a one-block loop then we make sure we stop
                                    continue_dfs = None
                                }
                            }
                        }
                    }
                }
                // Now we have handled the popped node and need to continue the DFS by adding the
                // predecessors of that node
                if let Some(continue_dfs) = continue_dfs {
                    for BlockPredecessor { block: pred, .. } in cfg.pred_iter(continue_dfs) {
                        stack.push(pred)
                    }
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::cursor::{Cursor, FuncCursor};
    use crate::dominator_tree::DominatorTree;
    use crate::flowgraph::ControlFlowGraph;
    use crate::ir::{types, Function, InstBuilder};
    use crate::loop_analysis::{Loop, LoopAnalysis};
    use alloc::vec::Vec;

    #[test]
    fn nested_loops_detection() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let block3 = func.dfg.make_block();
        let cond = func.dfg.append_block_param(block0, types::I32);

        {
            let mut cur = FuncCursor::new(&mut func);

            cur.insert_block(block0);
            cur.ins().jump(block1, &[]);

            cur.insert_block(block1);
            cur.ins().jump(block2, &[]);

            cur.insert_block(block2);
            cur.ins().brnz(cond, block1, &[]);
            cur.ins().jump(block3, &[]);

            cur.insert_block(block3);
            cur.ins().brnz(cond, block0, &[]);
        }

        let mut loop_analysis = LoopAnalysis::new();
        let mut cfg = ControlFlowGraph::new();
        let mut domtree = DominatorTree::new();
        cfg.compute(&func);
        domtree.compute(&func, &cfg);
        loop_analysis.compute(&func, &cfg, &domtree);

        let loops = loop_analysis.loops().collect::<Vec<Loop>>();
        assert_eq!(loops.len(), 2);
        assert_eq!(loop_analysis.loop_header(loops[0]), block0);
        assert_eq!(loop_analysis.loop_header(loops[1]), block1);
        assert_eq!(loop_analysis.loop_parent(loops[1]), Some(loops[0]));
        assert_eq!(loop_analysis.loop_parent(loops[0]), None);
        assert_eq!(loop_analysis.is_in_loop(block0, loops[0]), true);
        assert_eq!(loop_analysis.is_in_loop(block0, loops[1]), false);
        assert_eq!(loop_analysis.is_in_loop(block1, loops[1]), true);
        assert_eq!(loop_analysis.is_in_loop(block1, loops[0]), true);
        assert_eq!(loop_analysis.is_in_loop(block2, loops[1]), true);
        assert_eq!(loop_analysis.is_in_loop(block2, loops[0]), true);
        assert_eq!(loop_analysis.is_in_loop(block3, loops[0]), true);
        assert_eq!(loop_analysis.is_in_loop(block0, loops[1]), false);
    }

    #[test]
    fn complex_loop_detection() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let block3 = func.dfg.make_block();
        let block4 = func.dfg.make_block();
        let block5 = func.dfg.make_block();
        let cond = func.dfg.append_block_param(block0, types::I32);

        {
            let mut cur = FuncCursor::new(&mut func);

            cur.insert_block(block0);
            cur.ins().brnz(cond, block1, &[]);
            cur.ins().jump(block3, &[]);

            cur.insert_block(block1);
            cur.ins().jump(block2, &[]);

            cur.insert_block(block2);
            cur.ins().brnz(cond, block1, &[]);
            cur.ins().jump(block5, &[]);

            cur.insert_block(block3);
            cur.ins().jump(block4, &[]);

            cur.insert_block(block4);
            cur.ins().brnz(cond, block3, &[]);
            cur.ins().jump(block5, &[]);

            cur.insert_block(block5);
            cur.ins().brnz(cond, block0, &[]);
        }

        let mut loop_analysis = LoopAnalysis::new();
        let mut cfg = ControlFlowGraph::new();
        let mut domtree = DominatorTree::new();
        cfg.compute(&func);
        domtree.compute(&func, &cfg);
        loop_analysis.compute(&func, &cfg, &domtree);

        let loops = loop_analysis.loops().collect::<Vec<Loop>>();
        assert_eq!(loops.len(), 3);
        assert_eq!(loop_analysis.loop_header(loops[0]), block0);
        assert_eq!(loop_analysis.loop_header(loops[1]), block1);
        assert_eq!(loop_analysis.loop_header(loops[2]), block3);
        assert_eq!(loop_analysis.loop_parent(loops[1]), Some(loops[0]));
        assert_eq!(loop_analysis.loop_parent(loops[2]), Some(loops[0]));
        assert_eq!(loop_analysis.loop_parent(loops[0]), None);
        assert_eq!(loop_analysis.is_in_loop(block0, loops[0]), true);
        assert_eq!(loop_analysis.is_in_loop(block1, loops[1]), true);
        assert_eq!(loop_analysis.is_in_loop(block2, loops[1]), true);
        assert_eq!(loop_analysis.is_in_loop(block3, loops[2]), true);
        assert_eq!(loop_analysis.is_in_loop(block4, loops[2]), true);
        assert_eq!(loop_analysis.is_in_loop(block5, loops[0]), true);
    }
}