1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
//! Definitions for registers, operands, etc. Provides a thin
//! interface over the register allocator so that we can more easily
//! swap it out or shim it when necessary.

use crate::machinst::MachInst;
use alloc::{string::String, vec::Vec};
use core::{fmt::Debug, hash::Hash};
use regalloc2::{Allocation, Operand, PReg, VReg};
use smallvec::{smallvec, SmallVec};

#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

/// The first 128 vregs (64 int, 64 float/vec) are "pinned" to
/// physical registers: this means that they are always constrained to
/// the corresponding register at all use/mod/def sites.
///
/// Arbitrary vregs can also be constrained to physical registers at
/// particular use/def/mod sites, and this is preferable; but pinned
/// vregs allow us to migrate code that has been written using
/// RealRegs directly.
const PINNED_VREGS: usize = 128;

/// Convert a `VReg` to its pinned `PReg`, if any.
pub fn pinned_vreg_to_preg(vreg: VReg) -> Option<PReg> {
    if vreg.vreg() < PINNED_VREGS {
        Some(PReg::from_index(vreg.vreg()))
    } else {
        None
    }
}

/// Give the first available vreg for generated code (i.e., after all
/// pinned vregs).
pub fn first_user_vreg_index() -> usize {
    // This is just the constant defined above, but we keep the
    // constant private and expose only this helper function with the
    // specific name in order to ensure other parts of the code don't
    // open-code and depend on the index-space scheme.
    PINNED_VREGS
}

/// A register named in an instruction. This register can be either a
/// virtual register or a fixed physical register. It does not have
/// any constraints applied to it: those can be added later in
/// `MachInst::get_operands()` when the `Reg`s are converted to
/// `Operand`s.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Reg(VReg);

impl Reg {
    /// Get the physical register (`RealReg`), if this register is
    /// one.
    pub fn to_real_reg(self) -> Option<RealReg> {
        if pinned_vreg_to_preg(self.0).is_some() {
            Some(RealReg(self.0))
        } else {
            None
        }
    }

    /// Get the virtual (non-physical) register, if this register is
    /// one.
    pub fn to_virtual_reg(self) -> Option<VirtualReg> {
        if pinned_vreg_to_preg(self.0).is_none() {
            Some(VirtualReg(self.0))
        } else {
            None
        }
    }

    /// Get the class of this register.
    pub fn class(self) -> RegClass {
        self.0.class()
    }

    /// Is this a real (physical) reg?
    pub fn is_real(self) -> bool {
        self.to_real_reg().is_some()
    }

    /// Is this a virtual reg?
    pub fn is_virtual(self) -> bool {
        self.to_virtual_reg().is_some()
    }
}

impl std::fmt::Debug for Reg {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        if let Some(rreg) = self.to_real_reg() {
            let preg: PReg = rreg.into();
            write!(f, "{}", preg)
        } else if let Some(vreg) = self.to_virtual_reg() {
            let vreg: VReg = vreg.into();
            write!(f, "{}", vreg)
        } else {
            unreachable!()
        }
    }
}

/// A real (physical) register. This corresponds to one of the target
/// ISA's named registers and can be used as an instruction operand.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealReg(VReg);

impl RealReg {
    /// Get the class of this register.
    pub fn class(self) -> RegClass {
        self.0.class()
    }

    pub fn hw_enc(self) -> u8 {
        PReg::from(self).hw_enc() as u8
    }
}

impl std::fmt::Debug for RealReg {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        Reg::from(*self).fmt(f)
    }
}

/// A virtual register. This can be allocated into a real (physical)
/// register of the appropriate register class, but which one is not
/// specified. Virtual registers are used when generating `MachInst`s,
/// before register allocation occurs, in order to allow us to name as
/// many register-carried values as necessary.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VirtualReg(VReg);

impl VirtualReg {
    /// Get the class of this register.
    pub fn class(self) -> RegClass {
        self.0.class()
    }

    pub fn index(self) -> usize {
        self.0.vreg()
    }
}

impl std::fmt::Debug for VirtualReg {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        Reg::from(*self).fmt(f)
    }
}

/// A type wrapper that indicates a register type is writable. The
/// underlying register can be extracted, and the type wrapper can be
/// built using an arbitrary register. Hence, this type-level wrapper
/// is not strictly a guarantee. However, "casting" to a writable
/// register is an explicit operation for which we can
/// audit. Ordinarily, internal APIs in the compiler backend should
/// take a `Writable<Reg>` whenever the register is written, and the
/// usual, frictionless way to get one of these is to allocate a new
/// temporary.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Writable<T: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash> {
    reg: T,
}

impl<T: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash> Writable<T> {
    /// Explicitly construct a `Writable<T>` from a `T`. As noted in
    /// the documentation for `Writable`, this is not hidden or
    /// disallowed from the outside; anyone can perform the "cast";
    /// but it is explicit so that we can audit the use sites.
    pub fn from_reg(reg: T) -> Writable<T> {
        Writable { reg }
    }

    /// Get the underlying register, which can be read.
    pub fn to_reg(self) -> T {
        self.reg
    }

    /// Map the underlying register to another value or type.
    pub fn map<U, F>(self, f: F) -> Writable<U>
    where
        U: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash,
        F: Fn(T) -> U,
    {
        Writable { reg: f(self.reg) }
    }
}

// Conversions between regalloc2 types (VReg) and our types
// (VirtualReg, RealReg, Reg).

impl std::convert::From<regalloc2::VReg> for Reg {
    fn from(vreg: regalloc2::VReg) -> Reg {
        Reg(vreg)
    }
}

impl std::convert::From<regalloc2::VReg> for VirtualReg {
    fn from(vreg: regalloc2::VReg) -> VirtualReg {
        debug_assert!(pinned_vreg_to_preg(vreg).is_none());
        VirtualReg(vreg)
    }
}

impl std::convert::From<regalloc2::VReg> for RealReg {
    fn from(vreg: regalloc2::VReg) -> RealReg {
        debug_assert!(pinned_vreg_to_preg(vreg).is_some());
        RealReg(vreg)
    }
}

impl std::convert::From<Reg> for regalloc2::VReg {
    /// Extract the underlying `regalloc2::VReg`. Note that physical
    /// registers also map to particular (special) VRegs, so this
    /// method can be used either on virtual or physical `Reg`s.
    fn from(reg: Reg) -> regalloc2::VReg {
        reg.0
    }
}

impl std::convert::From<VirtualReg> for regalloc2::VReg {
    fn from(reg: VirtualReg) -> regalloc2::VReg {
        reg.0
    }
}

impl std::convert::From<RealReg> for regalloc2::VReg {
    fn from(reg: RealReg) -> regalloc2::VReg {
        reg.0
    }
}

impl std::convert::From<RealReg> for regalloc2::PReg {
    fn from(reg: RealReg) -> regalloc2::PReg {
        PReg::from_index(reg.0.vreg())
    }
}

impl std::convert::From<regalloc2::PReg> for RealReg {
    fn from(preg: regalloc2::PReg) -> RealReg {
        RealReg(VReg::new(preg.index(), preg.class()))
    }
}

impl std::convert::From<regalloc2::PReg> for Reg {
    fn from(preg: regalloc2::PReg) -> Reg {
        Reg(VReg::new(preg.index(), preg.class()))
    }
}

impl std::convert::From<RealReg> for Reg {
    fn from(reg: RealReg) -> Reg {
        Reg(reg.0)
    }
}

impl std::convert::From<VirtualReg> for Reg {
    fn from(reg: VirtualReg) -> Reg {
        Reg(reg.0)
    }
}

/// A spill slot.
pub type SpillSlot = regalloc2::SpillSlot;

/// A register class. Each register in the ISA has one class, and the
/// classes are disjoint. Most modern ISAs will have just two classes:
/// the integer/general-purpose registers (GPRs), and the float/vector
/// registers (typically used for both).
///
/// Note that unlike some other compiler backend/register allocator
/// designs, we do not allow for overlapping classes, i.e. registers
/// that belong to more than one class, because doing so makes the
/// allocation problem significantly more complex. Instead, when a
/// register can be addressed under different names for different
/// sizes (for example), the backend author should pick classes that
/// denote some fundamental allocation unit that encompasses the whole
/// register. For example, always allocate 128-bit vector registers
/// `v0`..`vN`, even though `f32` and `f64` values may use only the
/// low 32/64 bits of those registers and name them differently.
pub type RegClass = regalloc2::RegClass;

/// An OperandCollector is a wrapper around a Vec of Operands
/// (flattened array for a whole sequence of instructions) that
/// gathers operands from a single instruction and provides the range
/// in the flattened array.
#[derive(Debug)]
pub struct OperandCollector<'a, F: Fn(VReg) -> VReg> {
    operands: &'a mut Vec<Operand>,
    operands_start: usize,
    clobbers: Vec<PReg>,
    renamer: F,
}

impl<'a, F: Fn(VReg) -> VReg> OperandCollector<'a, F> {
    /// Start gathering operands into one flattened operand array.
    pub fn new(operands: &'a mut Vec<Operand>, renamer: F) -> Self {
        let operands_start = operands.len();
        Self {
            operands,
            operands_start,
            clobbers: vec![],
            renamer,
        }
    }

    /// Add an operand.
    fn add_operand(&mut self, operand: Operand) {
        let vreg = (self.renamer)(operand.vreg());
        let operand = Operand::new(vreg, operand.constraint(), operand.kind(), operand.pos());
        self.operands.push(operand);
    }

    /// Add a clobber.
    fn add_clobber(&mut self, clobber: PReg) {
        self.clobbers.push(clobber);
    }

    /// Finish the operand collection and return the tuple giving the
    /// range of indices in the flattened operand array, and the
    /// clobber array.
    pub fn finish(self) -> ((u32, u32), Vec<PReg>) {
        let start = self.operands_start as u32;
        let end = self.operands.len() as u32;
        ((start, end), self.clobbers)
    }

    /// Add a register use, at the start of the instruction (`Before`
    /// position).
    pub fn reg_use(&mut self, reg: Reg) {
        self.add_operand(Operand::reg_use(reg.into()));
    }

    /// Add multiple register uses.
    pub fn reg_uses(&mut self, regs: &[Reg]) {
        for &reg in regs {
            self.reg_use(reg);
        }
    }

    /// Add a register def, at the end of the instruction (`After`
    /// position). Use only when this def will be written after all
    /// uses are read.
    pub fn reg_def(&mut self, reg: Writable<Reg>) {
        self.add_operand(Operand::reg_def(reg.to_reg().into()));
    }

    /// Add multiple register defs.
    pub fn reg_defs(&mut self, regs: &[Writable<Reg>]) {
        for &reg in regs {
            self.reg_def(reg);
        }
    }

    /// Add a register "early def", which logically occurs at the
    /// beginning of the instruction, alongside all uses. Use this
    /// when the def may be written before all uses are read; the
    /// regalloc will ensure that it does not overwrite any uses.
    pub fn reg_early_def(&mut self, reg: Writable<Reg>) {
        self.add_operand(Operand::reg_def_at_start(reg.to_reg().into()));
    }

    /// Add a register "fixed use", which ties a vreg to a particular
    /// RealReg at this point.
    pub fn reg_fixed_use(&mut self, reg: Reg, rreg: Reg) {
        let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
        self.add_operand(Operand::reg_fixed_use(reg.into(), rreg.into()));
    }

    /// Add a register "fixed def", which ties a vreg to a particular
    /// RealReg at this point.
    pub fn reg_fixed_def(&mut self, reg: Writable<Reg>, rreg: Reg) {
        let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
        self.add_operand(Operand::reg_fixed_def(reg.to_reg().into(), rreg.into()));
    }

    /// Add a register def that reuses an earlier use-operand's
    /// allocation. The index of that earlier operand (relative to the
    /// current instruction's start of operands) must be known.
    pub fn reg_reuse_def(&mut self, reg: Writable<Reg>, idx: usize) {
        if reg.to_reg().to_virtual_reg().is_some() {
            self.add_operand(Operand::reg_reuse_def(reg.to_reg().into(), idx));
        } else {
            // Sometimes destination registers that reuse a source are
            // given with RealReg args. In this case, we assume the
            // creator of the instruction knows what they are doing
            // and just emit a normal def to the pinned vreg.
            self.add_operand(Operand::reg_def(reg.to_reg().into()));
        }
    }

    /// Add a register use+def, or "modify", where the reg must stay
    /// in the same register on the input and output side of the
    /// instruction.
    pub fn reg_mod(&mut self, reg: Writable<Reg>) {
        self.add_operand(Operand::new(
            reg.to_reg().into(),
            regalloc2::OperandConstraint::Reg,
            regalloc2::OperandKind::Mod,
            regalloc2::OperandPos::Early,
        ));
    }

    /// Add a register clobber. This is a register that is written by
    /// the instruction, so must be reserved (not used) for the whole
    /// instruction, but is not used afterward.
    #[allow(dead_code)] // FIXME: use clobbers rather than defs for calls!
    pub fn reg_clobber(&mut self, reg: Writable<RealReg>) {
        self.add_clobber(PReg::from(reg.to_reg()));
    }
}

/// Use an OperandCollector to count the number of operands on an instruction.
pub fn count_operands<I: MachInst>(inst: &I) -> usize {
    let mut ops = vec![];
    let mut coll = OperandCollector::new(&mut ops, |vreg| vreg);
    inst.get_operands(&mut coll);
    let ((start, end), _) = coll.finish();
    debug_assert_eq!(0, start);
    end as usize
}

/// Pretty-print part of a disassembly, with knowledge of
/// operand/instruction size, and optionally with regalloc
/// results. This can be used, for example, to print either `rax` or
/// `eax` for the register by those names on x86-64, depending on a
/// 64- or 32-bit context.
pub trait PrettyPrint {
    fn pretty_print(&self, size_bytes: u8, allocs: &mut AllocationConsumer<'_>) -> String;

    fn pretty_print_default(&self) -> String {
        self.pretty_print(0, &mut AllocationConsumer::new(&[]))
    }
}

/// A consumer of an (optional) list of Allocations along with Regs
/// that provides RealRegs where available.
///
/// This is meant to be used during code emission or
/// pretty-printing. In at least the latter case, regalloc results may
/// or may not be available, so we may end up printing either vregs or
/// rregs. Even pre-regalloc, though, some registers may be RealRegs
/// that were provided when the instruction was created.
///
/// This struct should be used in a specific way: when matching on an
/// instruction, provide it the Regs in the same order as they were
/// provided to the OperandCollector.
#[derive(Clone)]
pub struct AllocationConsumer<'a> {
    allocs: std::slice::Iter<'a, Allocation>,
}

impl<'a> AllocationConsumer<'a> {
    pub fn new(allocs: &'a [Allocation]) -> Self {
        Self {
            allocs: allocs.iter(),
        }
    }

    pub fn next(&mut self, pre_regalloc_reg: Reg) -> Reg {
        let alloc = self.allocs.next();
        let alloc = alloc.map(|alloc| {
            Reg::from(
                alloc
                    .as_reg()
                    .expect("Should not have gotten a stack allocation"),
            )
        });

        match (pre_regalloc_reg.to_real_reg(), alloc) {
            (Some(rreg), None) => rreg.into(),
            (Some(rreg), Some(alloc)) => {
                debug_assert_eq!(Reg::from(rreg), alloc);
                alloc
            }
            (None, Some(alloc)) => alloc,
            _ => pre_regalloc_reg,
        }
    }

    pub fn next_writable(&mut self, pre_regalloc_reg: Writable<Reg>) -> Writable<Reg> {
        Writable::from_reg(self.next(pre_regalloc_reg.to_reg()))
    }

    pub fn next_n(&mut self, count: usize) -> SmallVec<[Allocation; 4]> {
        let mut allocs = smallvec![];
        for _ in 0..count {
            if let Some(next) = self.allocs.next() {
                allocs.push(*next);
            } else {
                return allocs;
            }
        }
        allocs
    }
}

impl<'a> std::default::Default for AllocationConsumer<'a> {
    fn default() -> Self {
        Self { allocs: [].iter() }
    }
}