1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//! A Constant-Phi-Node removal pass.

use crate::dominator_tree::DominatorTree;
use crate::entity::EntityList;
use crate::fx::FxHashMap;
use crate::fx::FxHashSet;
use crate::ir::instructions::BranchInfo;
use crate::ir::Function;
use crate::ir::{Block, Inst, Value};
use crate::timing;

use smallvec::{smallvec, SmallVec};
use std::vec::Vec;

// A note on notation.  For the sake of clarity, this file uses the phrase
// "formal parameters" to mean the `Value`s listed in the block head, and
// "actual parameters" to mean the `Value`s passed in a branch or a jump:
//
// block4(v16: i32, v18: i32):    <-- formal parameters
//   ...
//   brnz v27, block7(v22, v24)   <-- actual parameters
//   jump block6

// This transformation pass (conceptually) partitions all values in the
// function into two groups:
//
// * Group A: values defined by block formal parameters, except for the entry block.
//
// * Group B: All other values: that is, values defined by instructions,
//   and the formals of the entry block.
//
// For each value in Group A, it attempts to establish whether it will have
// the value of exactly one member of Group B.  If so, the formal parameter is
// deleted, all corresponding actual parameters (in jumps/branches to the
// defining block) are deleted, and a rename is inserted.
//
// The entry block is special-cased because (1) we don't know what values flow
// to its formals and (2) in any case we can't change its formals.
//
// Work proceeds in three phases.
//
// * Phase 1: examine all instructions.  For each block, make up a useful
//   grab-bag of information, `BlockSummary`, that summarises the block's
//   formals and jump/branch instruction.  This is used by Phases 2 and 3.
//
// * Phase 2: for each value in Group A, try to find a single Group B value
//   that flows to it.  This is done using a classical iterative forward
//   dataflow analysis over a simple constant-propagation style lattice.  It
//   converges quickly in practice -- I have seen at most 4 iterations.  This
//   is relatively cheap because the iteration is done over the
//   `BlockSummary`s, and does not visit each instruction.  The resulting
//   fixed point is stored in a `SolverState`.
//
// * Phase 3: using the `SolverState` and `BlockSummary`, edit the function to
//   remove redundant formals and actuals, and to insert suitable renames.
//
// Note that the effectiveness of the analysis depends on on the fact that
// there are no copy instructions in Cranelift's IR.  If there were, the
// computation of `actual_absval` in Phase 2 would have to be extended to
// chase through such copies.
//
// For large functions, the analysis cost using the new AArch64 backend is about
// 0.6% of the non-optimising compile time, as measured by instruction counts.
// This transformation usually pays for itself several times over, though, by
// reducing the isel/regalloc cost downstream.  Gains of up to 7% have been
// seen for large functions.

/// The `Value`s (Group B) that can flow to a formal parameter (Group A).
#[derive(Clone, Copy, Debug, PartialEq)]
enum AbstractValue {
    /// Two or more values flow to this formal.
    Many,

    /// Exactly one value, as stated, flows to this formal.  The `Value`s that
    /// can appear here are exactly: `Value`s defined by `Inst`s, plus the
    /// `Value`s defined by the formals of the entry block.  Note that this is
    /// exactly the set of `Value`s that are *not* tracked in the solver below
    /// (see `SolverState`).
    One(Value /*Group B*/),

    /// No value flows to this formal.
    None,
}

impl AbstractValue {
    fn join(self, other: AbstractValue) -> AbstractValue {
        match (self, other) {
            // Joining with `None` has no effect
            (AbstractValue::None, p2) => p2,
            (p1, AbstractValue::None) => p1,
            // Joining with `Many` produces `Many`
            (AbstractValue::Many, _p2) => AbstractValue::Many,
            (_p1, AbstractValue::Many) => AbstractValue::Many,
            // The only interesting case
            (AbstractValue::One(v1), AbstractValue::One(v2)) => {
                if v1 == v2 {
                    AbstractValue::One(v1)
                } else {
                    AbstractValue::Many
                }
            }
        }
    }

    fn is_one(self) -> bool {
        matches!(self, AbstractValue::One(_))
    }
}

/// For some block, a useful bundle of info.  The `Block` itself is not stored
/// here since it will be the key in the associated `FxHashMap` -- see
/// `summaries` below.  For the `SmallVec` tuning params: most blocks have
/// few parameters, hence `4`.  And almost all blocks have either one or two
/// successors, hence `2`.
#[derive(Debug)]
struct BlockSummary {
    /// Formal parameters for this `Block`
    formals: SmallVec<[Value; 4] /*Group A*/>,

    /// For each `Inst` in this block that transfers to another block: the
    /// `Inst` itself, the destination `Block`, and the actual parameters
    /// passed.  We don't bother to include transfers that pass zero parameters
    /// since that makes more work for the solver for no purpose.
    dests: SmallVec<[(Inst, Block, SmallVec<[Value; 4] /*both Groups A and B*/>); 2]>,
}
impl BlockSummary {
    fn new(formals: SmallVec<[Value; 4]>) -> Self {
        Self {
            formals,
            dests: smallvec![],
        }
    }
}

/// Solver state.  This holds a AbstractValue for each formal parameter, except
/// for those from the entry block.
struct SolverState {
    absvals: FxHashMap<Value /*Group A*/, AbstractValue>,
}

impl SolverState {
    fn new() -> Self {
        Self {
            absvals: FxHashMap::default(),
        }
    }

    fn get(&self, actual: Value) -> AbstractValue {
        *self
            .absvals
            .get(&actual)
            .unwrap_or_else(|| panic!("SolverState::get: formal param {:?} is untracked?!", actual))
    }

    fn maybe_get(&self, actual: Value) -> Option<&AbstractValue> {
        self.absvals.get(&actual)
    }

    fn set(&mut self, actual: Value, lp: AbstractValue) {
        match self.absvals.insert(actual, lp) {
            Some(_old_lp) => {}
            None => panic!("SolverState::set: formal param {:?} is untracked?!", actual),
        }
    }
}

/// Detect phis in `func` that will only ever produce one value, using a
/// classic forward dataflow analysis.  Then remove them.
#[inline(never)]
pub fn do_remove_constant_phis(func: &mut Function, domtree: &mut DominatorTree) {
    let _tt = timing::remove_constant_phis();
    debug_assert!(domtree.is_valid());

    // Get the blocks, in reverse postorder
    let blocks_reverse_postorder = domtree
        .cfg_postorder()
        .into_iter()
        .rev()
        .collect::<Vec<_>>();

    // Phase 1 of 3: for each block, make a summary containing all relevant
    // info.  The solver will iterate over the summaries, rather than having
    // to inspect each instruction in each block.
    let mut summaries = FxHashMap::<Block, BlockSummary>::default();

    for &&b in &blocks_reverse_postorder {
        let formals = func.dfg.block_params(b);
        let mut summary = BlockSummary::new(SmallVec::from(formals));

        for inst in func.layout.block_insts(b) {
            let idetails = &func.dfg[inst];
            // Note that multi-dest transfers (i.e., branch tables) don't
            // carry parameters in our IR, so we only have to care about
            // `SingleDest` here.
            if let BranchInfo::SingleDest(dest, _) = idetails.analyze_branch(&func.dfg.value_lists)
            {
                let inst_var_args = func.dfg.inst_variable_args(inst);
                // Skip branches/jumps that carry no params.
                if inst_var_args.len() > 0 {
                    let mut actuals = SmallVec::<[Value; 4]>::new();
                    for arg in inst_var_args {
                        let arg = func.dfg.resolve_aliases(*arg);
                        actuals.push(arg);
                    }
                    summary.dests.push((inst, dest, actuals));
                }
            }
        }

        // Ensure the invariant that all blocks (except for the entry) appear
        // in the summary, *unless* they have neither formals nor any
        // param-carrying branches/jumps.
        if formals.len() > 0 || summary.dests.len() > 0 {
            summaries.insert(b, summary);
        }
    }

    // Phase 2 of 3: iterate over the summaries in reverse postorder,
    // computing new `AbstractValue`s for each tracked `Value`.  The set of
    // tracked `Value`s is exactly Group A as described above.

    let entry_block = func
        .layout
        .entry_block()
        .expect("remove_constant_phis: entry block unknown");

    // Set up initial solver state
    let mut state = SolverState::new();

    for &&b in &blocks_reverse_postorder {
        // For each block, get the formals
        if b == entry_block {
            continue;
        }
        let formals = func.dfg.block_params(b);
        for formal in formals {
            let mb_old_absval = state.absvals.insert(*formal, AbstractValue::None);
            assert!(mb_old_absval.is_none());
        }
    }

    // Solve: repeatedly traverse the blocks in reverse postorder, until there
    // are no changes.
    let mut iter_no = 0;
    loop {
        iter_no += 1;
        let mut changed = false;

        for &src in &blocks_reverse_postorder {
            let mb_src_summary = summaries.get(src);
            // The src block might have no summary.  This means it has no
            // branches/jumps that carry parameters *and* it doesn't take any
            // parameters itself.  Phase 1 ensures this.  So we can ignore it.
            if mb_src_summary.is_none() {
                continue;
            }
            let src_summary = mb_src_summary.unwrap();
            for (_inst, dst, src_actuals) in &src_summary.dests {
                assert!(*dst != entry_block);
                // By contrast, the dst block must have a summary.  Phase 1
                // will have only included an entry in `src_summary.dests` if
                // that branch/jump carried at least one parameter.  So the
                // dst block does take parameters, so it must have a summary.
                let dst_summary = summaries
                    .get(dst)
                    .expect("remove_constant_phis: dst block has no summary");
                let dst_formals = &dst_summary.formals;
                assert_eq!(src_actuals.len(), dst_formals.len());
                for (formal, actual) in dst_formals.iter().zip(src_actuals.iter()) {
                    // Find the abstract value for `actual`.  If it is a block
                    // formal parameter then the most recent abstract value is
                    // to be found in the solver state.  If not, then it's a
                    // real value defining point (not a phi), in which case
                    // return it itself.
                    let actual_absval = match state.maybe_get(*actual) {
                        Some(pt) => *pt,
                        None => AbstractValue::One(*actual),
                    };

                    // And `join` the new value with the old.
                    let formal_absval_old = state.get(*formal);
                    let formal_absval_new = formal_absval_old.join(actual_absval);
                    if formal_absval_new != formal_absval_old {
                        changed = true;
                        state.set(*formal, formal_absval_new);
                    }
                }
            }
        }

        if !changed {
            break;
        }
    }

    let mut n_consts = 0;
    for absval in state.absvals.values() {
        if absval.is_one() {
            n_consts += 1;
        }
    }

    // Phase 3 of 3: edit the function to remove constant formals, using the
    // summaries and the final solver state as a guide.

    // Make up a set of blocks that need editing.
    let mut need_editing = FxHashSet::<Block>::default();
    for (block, summary) in &summaries {
        if *block == entry_block {
            continue;
        }
        for formal in &summary.formals {
            let formal_absval = state.get(*formal);
            if formal_absval.is_one() {
                need_editing.insert(*block);
                break;
            }
        }
    }

    // Firstly, deal with the formals.  For each formal which is redundant,
    // remove it, and also add a reroute from it to the constant value which
    // it we know it to be.
    for b in &need_editing {
        let mut del_these = SmallVec::<[(Value, Value); 32]>::new();
        let formals: &[Value] = func.dfg.block_params(*b);
        for formal in formals {
            // The state must give an absval for `formal`.
            if let AbstractValue::One(replacement_val) = state.get(*formal) {
                del_these.push((*formal, replacement_val));
            }
        }
        // We can delete the formals in any order.  However,
        // `remove_block_param` works by sliding backwards all arguments to
        // the right of the value it is asked to delete.  Hence when removing more
        // than one formal, it is significantly more efficient to ask it to
        // remove the rightmost formal first, and hence this `rev()`.
        for (redundant_formal, replacement_val) in del_these.into_iter().rev() {
            func.dfg.remove_block_param(redundant_formal);
            func.dfg.change_to_alias(redundant_formal, replacement_val);
        }
    }

    // Secondly, visit all branch insns.  If the destination has had its
    // formals changed, change the actuals accordingly.  Don't scan all insns,
    // rather just visit those as listed in the summaries we prepared earlier.
    for (_src_block, summary) in &summaries {
        for (inst, dst_block, _src_actuals) in &summary.dests {
            if !need_editing.contains(dst_block) {
                continue;
            }

            let old_actuals = func.dfg[*inst].take_value_list().unwrap();
            let num_old_actuals = old_actuals.len(&func.dfg.value_lists);
            let num_fixed_actuals = func.dfg[*inst]
                .opcode()
                .constraints()
                .num_fixed_value_arguments();
            let dst_summary = summaries.get(&dst_block).unwrap();

            // Check that the numbers of arguments make sense.
            assert!(num_fixed_actuals <= num_old_actuals);
            assert_eq!(
                num_fixed_actuals + dst_summary.formals.len(),
                num_old_actuals
            );

            // Create a new value list.
            let mut new_actuals = EntityList::<Value>::new();
            // Copy the fixed args to the new list
            for i in 0..num_fixed_actuals {
                let val = old_actuals.get(i, &func.dfg.value_lists).unwrap();
                new_actuals.push(val, &mut func.dfg.value_lists);
            }

            // Copy the variable args (the actual block params) to the new
            // list, filtering out redundant ones.
            for (i, formal_i) in dst_summary.formals.iter().enumerate() {
                let actual_i = old_actuals
                    .get(num_fixed_actuals + i, &func.dfg.value_lists)
                    .unwrap();
                let is_redundant = state.get(*formal_i).is_one();
                if !is_redundant {
                    new_actuals.push(actual_i, &mut func.dfg.value_lists);
                }
            }
            func.dfg[*inst].put_value_list(new_actuals);
        }
    }

    log::debug!(
        "do_remove_constant_phis: done, {} iters.   {} formals, of which {} const.",
        iter_no,
        state.absvals.len(),
        n_consts
    );
}