1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// Copyright © 2018–2022 Trevor Spiteri

// This library is free software: you can redistribute it and/or
// modify it under the terms of either
//
//   * the Apache License, Version 2.0 or
//   * the MIT License
//
// at your option.
//
// You should have recieved copies of the Apache License and the MIT
// License along with the library. If not, see
// <https://www.apache.org/licenses/LICENSE-2.0> and
// <https://opensource.org/licenses/MIT>.

use crate::{
    debug_hex::{self, IsDebugHex},
    int_helper,
    types::extra::{LeEqU128, LeEqU16, LeEqU32, LeEqU64, LeEqU8},
    FixedI128, FixedI16, FixedI32, FixedI64, FixedI8, FixedU128, FixedU16, FixedU32, FixedU64,
    FixedU8,
};
use az_crate::{WrappingAs, WrappingCast};
use core::{
    cmp::{self, Ordering},
    fmt::{
        Alignment, Binary, Debug, Display, Formatter, LowerHex, Octal, Result as FmtResult,
        UpperHex,
    },
    ops::{Add, Shl, Shr},
    str,
};

// We need 130 bytes: 128 digits, one radix point, one leading zero.
//
// The leading zero has two purposes:
//
//  1. If there are no integer digits, we still want to start with "0.".
//  2. If rounding causes a carry, we can overflow into this extra zero.
//
// In the end the layout should be:
//
//   * data[0..int_digits + 1]: integer digits with potentially one extra zero
//   * data[int_digits + 1..int_digits + 2]: '.'
//   * data[int_digits + 2..int_digits + frac_digits + 2]: fractional digits
struct Buffer {
    int_digits: usize,
    frac_digits: usize,
    data: [u8; 130],
}

impl Buffer {
    fn new() -> Buffer {
        Buffer {
            int_digits: 0,
            frac_digits: 0,
            data: [0; 130],
        }
    }

    // Do not combine with new to avoid copying data, otherwise the
    // buffer will be created, modified with the '.', then copied.
    fn set_len(&mut self, int_digits: u32, frac_digits: u32) {
        assert!(int_digits + frac_digits < 130, "out of bounds");
        self.int_digits = int_digits as usize;
        self.frac_digits = frac_digits as usize;
        self.data[1 + self.int_digits] = b'.';
    }

    // does not include leading zero
    fn int(&mut self) -> &mut [u8] {
        let begin = 1;
        let end = begin + self.int_digits;
        &mut self.data[begin..end]
    }

    fn frac(&mut self) -> &mut [u8] {
        let begin = 1 + self.int_digits + 1;
        let end = begin + self.frac_digits;
        &mut self.data[begin..end]
    }

    fn finish(
        &mut self,
        radix: Radix,
        is_neg: bool,
        frac_rem_cmp_msb: Ordering,
        fmt: &mut Formatter,
    ) -> FmtResult {
        self.round_and_trim(radix.max(), frac_rem_cmp_msb);
        self.encode_digits(radix == Radix::UpHex);
        self.pad_and_print(is_neg, radix.prefix(), fmt)
    }

    fn round_and_trim(&mut self, max: u8, frac_rem_cmp_msb: Ordering) {
        let len = if self.frac_digits > 0 {
            self.int_digits + self.frac_digits + 2
        } else {
            self.int_digits + 1
        };

        let round_up = frac_rem_cmp_msb == Ordering::Greater
            || frac_rem_cmp_msb == Ordering::Equal && (self.data[len - 1] & 1 != 0);
        if round_up {
            for b in self.data[0..len].iter_mut().rev() {
                if *b < max {
                    *b += 1;
                    break;
                }
                if *b == b'.' {
                    debug_assert!(self.frac_digits == 0);
                    continue;
                }
                *b = 0;
                if self.frac_digits > 0 {
                    self.frac_digits -= 1;
                }
            }
        } else {
            let mut trim = 0;
            for b in self.frac().iter().rev() {
                if *b != 0 {
                    break;
                }
                trim += 1;
            }
            self.frac_digits -= trim;
        }
    }

    fn encode_digits(&mut self, upper: bool) {
        for digit in self.data[..self.int_digits + self.frac_digits + 2].iter_mut() {
            if *digit < 10 {
                *digit += b'0';
            } else if *digit < 16 {
                *digit += if upper { b'A' - 10 } else { b'a' - 10 };
            }
        }
    }

    fn pad_and_print(&self, is_neg: bool, maybe_prefix: &str, fmt: &mut Formatter) -> FmtResult {
        use core::fmt::Write;

        let sign = if is_neg {
            "-"
        } else if fmt.sign_plus() {
            "+"
        } else {
            ""
        };
        let prefix = if fmt.alternate() { maybe_prefix } else { "" };

        // For numbers with no significant integer bits:
        //   * data starts  with "0." and begin = 0.
        //
        // For numbers with some significant integer bits, data can have:
        //   * no leading zeros => begin = 0
        //   * one leading zero => begin = 1
        //   * two leading zeros => begin = 2
        //
        // Two leading zeros can happen for decimal only. For example
        // with four significant integer bits, we could get anything
        // between 8 and 15, so two decimal digits are allocated apart
        // from the initial padding zero. This means that for 8, data
        // would begin as "008.", and begin = 2.
        let abs_begin = if self.data[0] != b'0' || self.data[1] == b'.' {
            0
        } else if self.data[1] == b'0' {
            2
        } else {
            1
        };
        let end_zeros = fmt.precision().map(|x| x - self.frac_digits).unwrap_or(0);
        let abs_end = if self.frac_digits > 0 {
            self.int_digits + self.frac_digits + 2
        } else if end_zeros > 0 {
            self.int_digits + 2
        } else {
            self.int_digits + 1
        };

        let req_width = sign.len() + prefix.len() + abs_end - abs_begin + end_zeros;
        let pad = fmt
            .width()
            .and_then(|w| w.checked_sub(req_width))
            .unwrap_or(0);
        let (pad_left, pad_zeros, pad_right) = if fmt.sign_aware_zero_pad() {
            (0, pad, 0)
        } else {
            match fmt.align() {
                Some(Alignment::Left) => (0, 0, pad),
                Some(Alignment::Center) => (pad / 2, 0, pad - pad / 2),
                None | Some(Alignment::Right) => (pad, 0, 0),
            }
        };
        let fill = fmt.fill();

        for _ in 0..pad_left {
            fmt.write_char(fill)?;
        }
        fmt.write_str(sign)?;
        fmt.write_str(prefix)?;
        for _ in 0..pad_zeros {
            fmt.write_char('0')?;
        }
        fmt.write_str(str::from_utf8(&self.data[abs_begin..abs_end]).unwrap())?;
        for _ in 0..end_zeros {
            fmt.write_char('0')?;
        }
        for _ in 0..pad_right {
            fmt.write_char(fill)?;
        }
        Ok(())
    }
}

#[derive(Clone, Copy, Eq, PartialEq)]
enum Radix {
    Bin,
    Oct,
    LowHex,
    UpHex,
    Dec,
}
impl Radix {
    fn digit_bits(self) -> u32 {
        match self {
            Radix::Bin => 1,
            Radix::Oct => 3,
            Radix::LowHex => 4,
            Radix::UpHex => 4,
            Radix::Dec => 4,
        }
    }
    fn max(self) -> u8 {
        match self {
            Radix::Bin => 1,
            Radix::Oct => 7,
            Radix::LowHex => 15,
            Radix::UpHex => 15,
            Radix::Dec => 9,
        }
    }
    fn prefix(self) -> &'static str {
        match self {
            Radix::Bin => "0b",
            Radix::Oct => "0o",
            Radix::LowHex => "0x",
            Radix::UpHex => "0x",
            Radix::Dec => "",
        }
    }
}

trait FmtHelper
where
    Self: Copy + Ord,
    Self: Shl<u32, Output = Self> + Shr<u32, Output = Self> + Add<Output = Self>,
    Self: WrappingCast<u8> + Mul10 + From<u8>,
{
    const ZERO: Self;
    const MSB: Self;
    const BITS: u32;

    type Half: FmtHelper;

    fn int_used_nbits(int: Self) -> u32;
    fn frac_used_nbits(frac: Self) -> u32;
    fn as_half(val: Self) -> Self::Half;
    fn div_rem_10(val: Self) -> (Self, u8);
    fn wrapping_neg(val: Self) -> Self;

    fn write_int(mut int: Self, radix: Radix, nbits: u32, buf: &mut Buffer) {
        if Self::Half::BITS == Self::BITS / 2 && nbits <= Self::Half::BITS {
            return FmtHelper::write_int(Self::as_half(int), radix, nbits, buf);
        }
        let digit_bits = radix.digit_bits();
        let mask = radix.max();
        for b in buf.int().iter_mut().rev() {
            debug_assert!(int != Self::ZERO);
            *b = int.wrapping_as::<u8>() & mask;
            int = int >> digit_bits;
        }
        debug_assert!(int == Self::ZERO);
    }

    fn write_frac(mut frac: Self, radix: Radix, nbits: u32, buf: &mut Buffer) -> Ordering {
        if Self::Half::BITS == Self::BITS / 2 && nbits <= Self::Half::BITS {
            return FmtHelper::write_frac(
                Self::as_half(frac >> Self::Half::BITS),
                radix,
                nbits,
                buf,
            );
        }
        let digit_bits = radix.digit_bits();
        let compl_digit_bits = Self::BITS - digit_bits;
        for b in buf.frac().iter_mut() {
            debug_assert!(frac != Self::ZERO);
            *b = (frac >> compl_digit_bits).wrapping_as::<u8>();
            frac = frac << digit_bits;
        }
        frac.cmp(&Self::MSB)
    }

    fn write_int_dec(mut int: Self, nbits: u32, buf: &mut Buffer) {
        if Self::Half::BITS == Self::BITS / 2 && nbits <= Self::Half::BITS {
            return FmtHelper::write_int_dec(Self::as_half(int), nbits, buf);
        }
        for b in buf.int().iter_mut().rev() {
            let (q, r) = Self::div_rem_10(int);
            int = q;
            *b = r;
        }
        debug_assert!(int == Self::ZERO);
    }

    fn write_frac_dec(mut frac: Self, nbits: u32, auto_prec: bool, buf: &mut Buffer) -> Ordering {
        if Self::Half::BITS == Self::BITS / 2 && nbits <= Self::Half::BITS {
            return FmtHelper::write_frac_dec(
                Self::as_half(frac >> Self::Half::BITS),
                nbits,
                auto_prec,
                buf,
            );
        }

        // add_5 is to add rounding when all bits are used
        let (mut tie, mut add_5) = if nbits == Self::BITS {
            (Self::ZERO, true)
        } else {
            (Self::MSB >> nbits, false)
        };
        let mut trim_to = None;
        for (i, b) in buf.frac().iter_mut().enumerate() {
            *b = Mul10::mul10_assign(&mut frac);

            // Check if very close to zero, to avoid things like 0.19999999 and 0.20000001.
            // This takes place even if we have a precision.
            if frac < Self::from(10) || Self::wrapping_neg(frac) < Self::from(10) {
                trim_to = Some(i + 1);
                break;
            }

            if auto_prec {
                // tie might overflow in last iteration when i = frac_digits - 1,
                // but it has no effect as all it can do is set trim_to = Some(i + 1)
                Mul10::mul10_assign(&mut tie);
                if add_5 {
                    tie = tie + Self::from(5);
                    add_5 = false;
                }
                if frac < tie || Self::wrapping_neg(frac) < tie {
                    trim_to = Some(i + 1);
                    break;
                }
            }
        }
        if let Some(trim_to) = trim_to {
            buf.frac_digits = trim_to;
        }
        frac.cmp(&Self::MSB)
    }
}

macro_rules! impl_radix_helper {
    ($U:ident, $H:ident) => {
        impl FmtHelper for $U {
            const ZERO: $U = 0;
            const MSB: $U = 1 << ($U::BITS - 1);
            const BITS: u32 = $U::BITS;

            type Half = $H;

            fn int_used_nbits(int: $U) -> u32 {
                $U::BITS - int.leading_zeros()
            }

            fn frac_used_nbits(frac: $U) -> u32 {
                $U::BITS - frac.trailing_zeros()
            }

            fn as_half(val: $U) -> Self::Half {
                val as Self::Half
            }

            fn div_rem_10(val: $U) -> ($U, u8) {
                (val / 10, (val % 10).wrapping_cast())
            }

            fn wrapping_neg(val: $U) -> $U {
                val.wrapping_neg()
            }
        }
    };
}

impl_radix_helper! { u8, u8 }
impl_radix_helper! { u16, u8 }
impl_radix_helper! { u32, u16 }
impl_radix_helper! { u64, u32 }
impl_radix_helper! { u128, u64 }

fn fmt_dec<U: FmtHelper>((neg, abs): (bool, U), frac_nbits: u32, fmt: &mut Formatter) -> FmtResult {
    let (int, frac) = if frac_nbits == 0 {
        (abs, U::ZERO)
    } else if frac_nbits == U::BITS {
        (U::ZERO, abs)
    } else {
        (abs >> frac_nbits, abs << (U::BITS - frac_nbits))
    };
    let int_used_nbits = FmtHelper::int_used_nbits(int);
    let int_digits = ceil_log10_2_times(int_used_nbits);
    let frac_used_nbits = FmtHelper::frac_used_nbits(frac);
    let (frac_digits, auto_prec) = if let Some(precision) = fmt.precision() {
        // frac_used_nbits fits in usize, but precision might wrap to 0 in u32
        (cmp::min(frac_used_nbits as usize, precision) as u32, false)
    } else {
        (ceil_log10_2_times(frac_nbits), true)
    };

    let mut buf = Buffer::new();
    buf.set_len(int_digits, frac_digits);
    FmtHelper::write_int_dec(int, int_used_nbits, &mut buf);
    let frac_rem_cmp_msb = FmtHelper::write_frac_dec(frac, frac_nbits, auto_prec, &mut buf);
    buf.finish(Radix::Dec, neg, frac_rem_cmp_msb, fmt)
}

fn fmt_radix2<U: FmtHelper>(
    (neg, abs): (bool, U),
    frac_nbits: u32,
    radix: Radix,
    fmt: &mut Formatter,
) -> FmtResult {
    let (int, frac) = if frac_nbits == 0 {
        (abs, U::ZERO)
    } else if frac_nbits == U::BITS {
        (U::ZERO, abs)
    } else {
        (abs >> frac_nbits, abs << (U::BITS - frac_nbits))
    };
    let digit_bits = radix.digit_bits();
    let int_used_nbits = FmtHelper::int_used_nbits(int);
    let int_digits = (int_used_nbits + digit_bits - 1) / digit_bits;
    let frac_used_nbits = FmtHelper::frac_used_nbits(frac);
    let mut frac_digits = (frac_used_nbits + digit_bits - 1) / digit_bits;
    if let Some(precision) = fmt.precision() {
        // frac_digits fits in usize, but precision might wrap to 0 in u32
        frac_digits = cmp::min(frac_digits as usize, precision) as u32;
    }

    let mut buf = Buffer::new();
    buf.set_len(int_digits, frac_digits);
    FmtHelper::write_int(int, radix, int_used_nbits, &mut buf);
    // for bin, oct, hex, we can simply pass frac_used_bits to write_frac
    let frac_rem_cmp_msb = FmtHelper::write_frac(frac, radix, frac_used_nbits, &mut buf);
    buf.finish(radix, neg, frac_rem_cmp_msb, fmt)
}

macro_rules! impl_fmt {
    ($Fixed:ident($LeEqU:ident, $Inner:ident)) => {
        impl<Frac: $LeEqU> Display for $Fixed<Frac> {
            fn fmt(&self, f: &mut Formatter) -> FmtResult {
                let neg_abs = int_helper::$Inner::neg_abs(self.to_bits());
                fmt_dec(neg_abs, Self::FRAC_NBITS, f)
            }
        }

        impl<Frac: $LeEqU> Debug for $Fixed<Frac> {
            fn fmt(&self, f: &mut Formatter) -> FmtResult {
                let neg_abs = int_helper::$Inner::neg_abs(self.to_bits());
                match debug_hex::is_debug_hex(f) {
                    IsDebugHex::Lower => fmt_radix2(neg_abs, Self::FRAC_NBITS, Radix::LowHex, f),
                    IsDebugHex::Upper => fmt_radix2(neg_abs, Self::FRAC_NBITS, Radix::UpHex, f),
                    IsDebugHex::No => fmt_dec(neg_abs, Self::FRAC_NBITS, f),
                }
            }
        }

        impl<Frac: $LeEqU> Binary for $Fixed<Frac> {
            fn fmt(&self, f: &mut Formatter) -> FmtResult {
                let neg_abs = int_helper::$Inner::neg_abs(self.to_bits());
                fmt_radix2(neg_abs, Self::FRAC_NBITS, Radix::Bin, f)
            }
        }

        impl<Frac: $LeEqU> Octal for $Fixed<Frac> {
            fn fmt(&self, f: &mut Formatter) -> FmtResult {
                let neg_abs = int_helper::$Inner::neg_abs(self.to_bits());
                fmt_radix2(neg_abs, Self::FRAC_NBITS, Radix::Oct, f)
            }
        }

        impl<Frac: $LeEqU> LowerHex for $Fixed<Frac> {
            fn fmt(&self, f: &mut Formatter) -> FmtResult {
                let neg_abs = int_helper::$Inner::neg_abs(self.to_bits());
                fmt_radix2(neg_abs, Self::FRAC_NBITS, Radix::LowHex, f)
            }
        }

        impl<Frac: $LeEqU> UpperHex for $Fixed<Frac> {
            fn fmt(&self, f: &mut Formatter) -> FmtResult {
                let neg_abs = int_helper::$Inner::neg_abs(self.to_bits());
                fmt_radix2(neg_abs, Self::FRAC_NBITS, Radix::UpHex, f)
            }
        }
    };
}

impl_fmt! { FixedU8(LeEqU8, u8) }
impl_fmt! { FixedU16(LeEqU16, u16) }
impl_fmt! { FixedU32(LeEqU32, u32) }
impl_fmt! { FixedU64(LeEqU64, u64) }
impl_fmt! { FixedU128(LeEqU128, u128) }
impl_fmt! { FixedI8(LeEqU8, i8) }
impl_fmt! { FixedI16(LeEqU16, i16) }
impl_fmt! { FixedI32(LeEqU32, i32) }
impl_fmt! { FixedI64(LeEqU64, i64) }
impl_fmt! { FixedI128(LeEqU128, i128) }

// ceil(i × log_10 2), works for input < 112_816
fn ceil_log10_2_times(int_bits: u32) -> u32 {
    debug_assert!(int_bits < 112_816);
    ((u64::from(int_bits) * 0x4D10_4D43 + 0xFFFF_FFFF) >> 32) as u32
}

pub(crate) trait Mul10: Sized {
    fn mul10_assign(slf: &mut Self) -> u8;
}
macro_rules! mul10_widen {
    ($Single:ty, $Double:ty) => {
        impl Mul10 for $Single {
            #[inline]
            fn mul10_assign(x: &mut $Single) -> u8 {
                let prod = <$Double>::from(*x) * 10;
                *x = prod as $Single;
                (prod >> <$Single>::BITS) as u8
            }
        }
    };
}
mul10_widen! { u8, u16 }
mul10_widen! { u16, u32 }
mul10_widen! { u32, u64 }
mul10_widen! { u64, u128 }
impl Mul10 for u128 {
    #[inline]
    fn mul10_assign(x: &mut u128) -> u8 {
        const LO_MASK: u128 = !(!0 << 64);
        let hi = (*x >> 64) * 10;
        let lo = (*x & LO_MASK) * 10;
        // Workaround for https://github.com/rust-lang/rust/issues/63384
        // let (wrapped, overflow) = (hi << 64).overflowing_add(lo);
        // ((hi >> 64) as u8 + u8::from(overflow), wrapped)
        let (hi_lo, hi_hi) = (hi as u64, (hi >> 64) as u64);
        let (lo_lo, lo_hi) = (lo as u64, (lo >> 64) as u64);
        let (wrapped, overflow) = hi_lo.overflowing_add(lo_hi);
        *x = (u128::from(wrapped) << 64) | u128::from(lo_lo);
        hi_hi as u8 + u8::from(overflow)
    }
}

#[cfg(test)]
mod tests {
    use crate::{display, types::*};
    use std::{
        format,
        string::{String, ToString},
    };

    #[test]
    fn format() {
        let pos = I16F16::from_num(12.3);
        assert_eq!(format!("{:+}", pos), "+12.3");
        assert_eq!(format!("{:+08}", pos), "+00012.3");
        assert_eq!(format!("{:+#08}", pos), "+00012.3");
        assert_eq!(format!("{:+08X}", pos), "+0C.4CCD");
        assert_eq!(format!("{:+08.1X}", pos), "+0000C.5");
        assert_eq!(format!("{:+#08X}", pos), "+0xC.4CCD");
        assert_eq!(format!("{:+#08.1X}", pos), "+0x00C.5");

        assert_eq!(format!("{:#<8}", pos), "12.3####");
        assert_eq!(format!("{:#^8}", pos), "##12.3##");
        assert_eq!(format!("{:#^9}", pos), "##12.3###");
        assert_eq!(format!("{:#>8}", pos), "####12.3");
        assert_eq!(format!("{:#^08}", pos), "000012.3");
    }

    fn trim_frac_zeros(mut x: &str) -> &str {
        while x.ends_with('0') {
            x = &x[..x.len() - 1];
        }
        if x.ends_with('.') {
            x = &x[..x.len() - 1];
        }
        x
    }

    fn up_frac_digits(x: &mut String, frac_digits: usize) {
        if let Some(point) = x.find('.') {
            if let Some(additional) = frac_digits.checked_sub(x.len() - point - 1) {
                x.reserve(additional);
                for _ in 0..additional {
                    x.push('0');
                }
            }
        } else {
            x.reserve(frac_digits + 1);
            x.push('.');
            for _ in 0..frac_digits {
                x.push('0');
            }
        }
    }

    #[test]
    fn hex() {
        for i in 0..(1u32 << 7) {
            let p = 0x1234_5678_9abc_def0u64 ^ u64::from(i);
            let n = -0x1234_5678_9abc_def0i64 ^ i64::from(i);
            let f_p = U57F7::from_bits(p);
            let f_n = I57F7::from_bits(n);
            let mut check_p = format!("{:x}.{:02x}", p >> 7, (p & 0x7f) << 1);
            up_frac_digits(&mut check_p, 1000);
            let trimmed_p = trim_frac_zeros(&check_p);
            let mut check_n = format!("-{:x}.{:02x}", n.abs() >> 7, (n.abs() & 0x7f) << 1);
            up_frac_digits(&mut check_n, 1000);
            let trimmed_n = trim_frac_zeros(&check_n);
            assert_eq!(format!("{:.1000x}", f_p), check_p);
            assert_eq!(format!("{:x}", f_p), trimmed_p);
            assert_eq!(format!("{:.1000x}", f_n), check_n);
            assert_eq!(format!("{:x}", f_n), trimmed_n);
        }
    }

    #[test]
    fn debug_hex() {
        let v = I16F16::MAX;
        assert_eq!(format!("{:?}", v), "32767.99998");
        assert_eq!(format!("{:x?}", v), "7fff.ffff");
        assert_eq!(format!("{:X?}", v), "7FFF.FFFF");
        assert_eq!(format!("{:010X?}", v), "07FFF.FFFF");
    }

    #[test]
    fn dec() {
        for i in 0..(1 << 7) {
            // use 24 bits of precision to be like f32
            let bits = (!0u32 >> 8) ^ i;
            let fix = U25F7::from_bits(bits);
            let flt = (bits as f32) / 7f32.exp2();
            assert_eq!(format!("{}", fix), format!("{}", flt));
            assert_eq!(U25F7::from_num(flt), fix);
            assert_eq!(fix.to_num::<f32>(), flt);
        }
    }

    #[test]
    fn display_frac() {
        assert_eq!(
            format!("{:X}", I0F128::from_bits(!0)),
            "-0.00000000000000000000000000000001"
        );
        assert_eq!(format!("{:X}", I0F64::from_bits(!0)), "-0.0000000000000001");
        assert_eq!(format!("{:X}", I0F32::from_bits(!0)), "-0.00000001");
        assert_eq!(format!("{:X}", I0F16::from_bits(!0)), "-0.0001");
        assert_eq!(format!("{:X}", I0F8::from_bits(!0)), "-0.01");
        assert_eq!(
            format!("{:X}", U0F128::from_bits(!0)),
            "0.FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
        );
        assert_eq!(format!("{:X}", U0F64::from_bits(!0)), "0.FFFFFFFFFFFFFFFF");
        assert_eq!(format!("{:X}", U0F32::from_bits(!0)), "0.FFFFFFFF");
        assert_eq!(format!("{:X}", U0F16::from_bits(!0)), "0.FFFF");
        assert_eq!(format!("{:X}", U0F8::from_bits(!0)), "0.FF");

        assert_eq!(
            format!("{}", I0F128::from_bits(!0)),
            "-0.000000000000000000000000000000000000003"
        );
        assert_eq!(
            format!("{}", I0F64::from_bits(!0)),
            "-0.00000000000000000005"
        );
        assert_eq!(format!("{}", I0F32::from_bits(!0)), "-0.0000000002");
        assert_eq!(format!("{}", I0F16::from_bits(!0)), "-0.00002");
        assert_eq!(format!("{}", I0F8::from_bits(!0)), "-0.004");
        assert_eq!(
            format!("{}", U0F128::from_bits(!0)),
            "0.999999999999999999999999999999999999997"
        );
        assert_eq!(
            format!("{}", U0F64::from_bits(!0)),
            "0.99999999999999999995"
        );
        assert_eq!(format!("{}", U0F32::from_bits(!0)), "0.9999999998");
        assert_eq!(format!("{}", U0F16::from_bits(!0)), "0.99998");
        assert_eq!(format!("{}", U0F8::from_bits(!0)), "0.996");

        // check overflow issues in <u128 as Mul10>::mul10
        let no_internal_overflow_bits = 0xe666_6666_6666_6665_ffff_ffff_ffff_ffffu128;
        let internal_overflow_bits = 0xe666_6666_6666_6666_ffff_ffff_ffff_ffffu128;
        assert_eq!(
            format!("{:X}", U0F128::from_bits(no_internal_overflow_bits)),
            "0.E666666666666665FFFFFFFFFFFFFFFF"
        );
        assert_eq!(
            format!("{:X}", U0F128::from_bits(internal_overflow_bits)),
            "0.E666666666666666FFFFFFFFFFFFFFFF"
        );
        assert_eq!(
            format!("{}", U0F128::from_bits(no_internal_overflow_bits)),
            "0.899999999999999999978315956550289911317"
        );
        assert_eq!(
            format!("{}", U0F128::from_bits(internal_overflow_bits)),
            "0.900000000000000000032526065174565133017"
        );
    }

    #[test]
    fn close_to_round_decimal() {
        for i in 0..1000u16 {
            // f32 has 24 bits of precision, so we use 1 bit for the
            // integer part to have exactly 23 bits for the fraction
            let float = f32::from(i + 1000) / 1000.;
            let fix = U9F23::from_num(float);
            let check = format!("1.{:03}", i);
            assert_eq!(format!("{}", fix), trim_frac_zeros(&check));
            assert_eq!(format!("{}", fix), format!("{}", float));
            for prec in 0..10 {
                assert_eq!(format!("{:.*}", prec, fix), format!("{:.*}", prec, float));
            }
        }
    }

    #[test]
    fn check_ceil_log10_2_times() {
        for i in 0..112_816 {
            let check = (f64::from(i) * 2f64.log10()).ceil() as u32;
            assert_eq!(display::ceil_log10_2_times(i), check);
        }
    }

    #[test]
    fn rounding() {
        let i = U8F8::from_bits(0xFF80);
        assert_eq!(format!("{}", i), "255.5");
        assert_eq!(format!("{:?}", i), "255.5");
        assert_eq!(format!("{:.0}", i), "256");
        assert_eq!(format!("{:b}", i), "11111111.1");
        assert_eq!(format!("{:.0b}", i), "100000000");
        assert_eq!(format!("{:o}", i), "377.4");
        assert_eq!(format!("{:.0o}", i), "400");
        assert_eq!(format!("{:X}", i), "FF.8");
        assert_eq!(format!("{:.0X}", i), "100");

        let i = U8F8::from_bits(0xFE80);
        assert_eq!(format!("{}", i), "254.5");
        assert_eq!(format!("{:?}", i), "254.5");
        assert_eq!(format!("{:.0}", i), "254");
        assert_eq!(format!("{:b}", i), "11111110.1");
        assert_eq!(format!("{:.0b}", i), "11111110");
        assert_eq!(format!("{:o}", i), "376.4");
        assert_eq!(format!("{:.0o}", i), "376");
        assert_eq!(format!("{:X}", i), "FE.8");
        assert_eq!(format!("{:.0X}", i), "FE");

        let i = U8F8::from_bits(0xDDDD);
        assert_eq!(format!("{}", i), "221.863");
        assert_eq!(format!("{:?}", i), "221.863");
        assert_eq!(format!("{:.0}", i), "222");
        assert_eq!(format!("{:.1}", i), "221.9");
        assert_eq!(format!("{:.2}", i), "221.86");
        assert_eq!(format!("{:.3}", i), "221.863");
        assert_eq!(format!("{:.4}", i), "221.8633");
        assert_eq!(format!("{:.5}", i), "221.86328");
        assert_eq!(format!("{:.6}", i), "221.863281");
        assert_eq!(format!("{:.7}", i), "221.8632812");
        assert_eq!(format!("{:.8}", i), "221.86328125");
        assert_eq!(format!("{:.9}", i), "221.863281250");
        assert_eq!(format!("{:b}", i), "11011101.11011101");
        assert_eq!(format!("{:.0b}", i), "11011110");
        assert_eq!(format!("{:.1b}", i), "11011110.0");
        assert_eq!(format!("{:.2b}", i), "11011101.11");
        assert_eq!(format!("{:.3b}", i), "11011101.111");
        assert_eq!(format!("{:.4b}", i), "11011101.1110");
        assert_eq!(format!("{:.5b}", i), "11011101.11100");
        assert_eq!(format!("{:.6b}", i), "11011101.110111");
        assert_eq!(format!("{:.7b}", i), "11011101.1101110");
        assert_eq!(format!("{:.8b}", i), "11011101.11011101");
        assert_eq!(format!("{:.9b}", i), "11011101.110111010");
        assert_eq!(format!("{:o}", i), "335.672");
        assert_eq!(format!("{:.0o}", i), "336");
        assert_eq!(format!("{:.1o}", i), "335.7");
        assert_eq!(format!("{:.2o}", i), "335.67");
        assert_eq!(format!("{:.3o}", i), "335.672");
        assert_eq!(format!("{:.4o}", i), "335.6720");
        assert_eq!(format!("{:X}", i), "DD.DD");
        assert_eq!(format!("{:.0X}", i), "DE");
        assert_eq!(format!("{:.0X}", i), "DE");
        assert_eq!(format!("{:.1X}", i), "DD.E");
        assert_eq!(format!("{:.2X}", i), "DD.DD");
        assert_eq!(format!("{:.3X}", i), "DD.DD0");
    }

    #[test]
    fn compare_frac0_int() {
        for u in 0..=255u8 {
            let i = u as i8;
            let (ifix, ufix) = (I8F0::from_bits(i), U8F0::from_bits(u));
            assert_eq!(ifix.to_string(), i.to_string());
            assert_eq!(ufix.to_string(), u.to_string());
            if i >= 0 {
                assert_eq!(format!("{:#X}", ifix), format!("{:#X}", i));
                assert_eq!(format!("{:#b}", ifix), format!("{:#b}", i));
            } else {
                let abs_i = i.wrapping_neg() as u8;
                assert_eq!(format!("{:#X}", ifix), format!("-{:#X}", abs_i));
                assert_eq!(format!("{:#b}", ifix), format!("-{:#b}", abs_i));
            }
            assert_eq!(format!("{:#x}", ufix), format!("{:#x}", u));
            assert_eq!(format!("{:#o}", ufix), format!("{:#o}", u));
        }
    }

    #[test]
    fn compare_frac4_float() {
        for u in 0..=255u8 {
            // I4F4 and U4F4 are displayed like f32 when the f32
            // display precision is the number of fractional digits
            // displayed for fixed-point. This verifies correct display
            // of the integer part.
            let (ifix, ufix) = (I4F4::from_bits(u as i8), U4F4::from_bits(u));
            let (iflo, uflo) = (ifix.to_num::<f32>(), ufix.to_num::<f32>());
            let (sifix, sufix) = (ifix.to_string(), ufix.to_string());
            let pifix = sifix.find('.').map(|p| sifix.len() - 1 - p).unwrap_or(0);
            let pufix = sufix.find('.').map(|p| sufix.len() - 1 - p).unwrap_or(0);
            let (siflo, suflo) = (format!("{:.*}", pifix, iflo), format!("{:.*}", pufix, uflo));
            assert_eq!(sifix, siflo);
            assert_eq!(sufix, suflo);

            // I28F4 and U28F4 are displayed like f32 when the f32 has
            // four bits of precision dedicated to the fractional
            // part. For f32, this requires the magnitude’s integer
            // part to have 20 significant bits: (1 << 19)..(1 << 20).
            let ifixed =
                I28F4::from(ifix) + I28F4::from_num(i32::from(ifix.to_bits().signum()) << 19);
            let ufixed = U28F4::from(ufix) + U28F4::from_num(1 << 19);
            let (ifloat, ufloat) = (ifixed.to_num::<f32>(), ufixed.to_num::<f32>());
            let (sifixed, sufixed) = (ifixed.to_string(), ufixed.to_string());
            let (sifloat, sufloat) = (ifloat.to_string(), ufloat.to_string());
            assert_eq!(sifixed, sifloat);
            assert_eq!(sufixed, sufloat);

            // The fractional parts of I4F4 and U4F4 are displayed
            // like the fractional parts of I28F4 and U28F4
            // respectively.
            let sifix_frac = sifix.find('.').map(|i| &sifix[i..]);
            let sifixed_frac = sifixed.find('.').map(|i| &sifixed[i..]);
            assert_eq!(sifix_frac, sifixed_frac);
            let sufix_frac = sufix.find('.').map(|i| &sufix[i..]);
            let sufixed_frac = sufixed.find('.').map(|i| &sufixed[i..]);
            assert_eq!(sufix_frac, sufixed_frac);
        }
    }

    #[test]
    fn compare_frac17_float() {
        for u in 0..(1 << 17) {
            // 24 bits of precision: 17 fractional bits + 7 significant integer bits
            let fix = U15F17::from_bits(u) + U15F17::from_num(99);
            let fix_pos = I15F17::from_num(fix);
            let fix_neg = -fix_pos;
            let (flo, flo_neg) = (fix.to_num::<f32>(), fix_neg.to_num::<f32>());

            let fix_str = fix.to_string();
            let fix_pos_str = fix_pos.to_string();
            let fix_neg_str = fix_neg.to_string();
            assert_eq!(fix_str, flo.to_string());
            assert_eq!(fix_str, fix_pos_str);
            assert_eq!(fix_neg_str, flo_neg.to_string());
            if u != 0 {
                assert_eq!(&fix_neg_str[..1], "-");
                assert_eq!(&fix_neg_str[1..], fix_pos_str);
            }

            let fix_str3 = format!("{:.3}", fix);
            let fix_pos_str3 = format!("{:.3}", fix_pos);
            let fix_neg_str3 = format!("{:.3}", fix_neg);
            assert_eq!(fix_str3, format!("{:.3}", flo));
            assert_eq!(fix_str3, fix_pos_str3);
            assert_eq!(fix_neg_str3, format!("{:.3}", flo_neg));
            if u != 0 {
                assert_eq!(&fix_neg_str3[..1], "-");
                assert_eq!(&fix_neg_str3[1..], fix_pos_str3);
            }
        }
    }
}