1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use futures::{prelude::*, ready};
use libp2p_core::{InboundUpgrade, OutboundUpgrade, UpgradeInfo};
use std::{io, iter, pin::Pin, task::Context, task::Poll};

#[derive(Debug, Copy, Clone)]
pub struct DeflateConfig {
    compression: flate2::Compression,
}

impl Default for DeflateConfig {
    fn default() -> Self {
        DeflateConfig {
            compression: flate2::Compression::fast(),
        }
    }
}

impl UpgradeInfo for DeflateConfig {
    type Info = &'static [u8];
    type InfoIter = iter::Once<Self::Info>;

    fn protocol_info(&self) -> Self::InfoIter {
        iter::once(b"/deflate/1.0.0")
    }
}

impl<C> InboundUpgrade<C> for DeflateConfig
where
    C: AsyncRead + AsyncWrite,
{
    type Output = DeflateOutput<C>;
    type Error = io::Error;
    type Future = future::Ready<Result<Self::Output, Self::Error>>;

    fn upgrade_inbound(self, r: C, _: Self::Info) -> Self::Future {
        future::ok(DeflateOutput::new(r, self.compression))
    }
}

impl<C> OutboundUpgrade<C> for DeflateConfig
where
    C: AsyncRead + AsyncWrite,
{
    type Output = DeflateOutput<C>;
    type Error = io::Error;
    type Future = future::Ready<Result<Self::Output, Self::Error>>;

    fn upgrade_outbound(self, w: C, _: Self::Info) -> Self::Future {
        future::ok(DeflateOutput::new(w, self.compression))
    }
}

/// Decodes and encodes traffic using DEFLATE.
#[derive(Debug)]
pub struct DeflateOutput<S> {
    /// Inner stream where we read compressed data from and write compressed data to.
    inner: S,
    /// Internal object used to hold the state of the compression.
    compress: flate2::Compress,
    /// Internal object used to hold the state of the decompression.
    decompress: flate2::Decompress,
    /// Temporary buffer between `compress` and `inner`. Stores compressed bytes that need to be
    /// sent out once `inner` is ready to accept more.
    write_out: Vec<u8>,
    /// Temporary buffer between `decompress` and `inner`. Stores compressed bytes that need to be
    /// given to `decompress`.
    read_interm: Vec<u8>,
    /// When we read from `inner` and `Ok(0)` is returned, we set this to `true` so that we don't
    /// read from it again.
    inner_read_eof: bool,
}

impl<S> DeflateOutput<S> {
    fn new(inner: S, compression: flate2::Compression) -> Self {
        DeflateOutput {
            inner,
            compress: flate2::Compress::new(compression, false),
            decompress: flate2::Decompress::new(false),
            write_out: Vec::with_capacity(256),
            read_interm: Vec::with_capacity(256),
            inner_read_eof: false,
        }
    }

    /// Tries to write the content of `self.write_out` to `self.inner`.
    /// Returns `Ready(Ok(()))` if `self.write_out` is empty.
    fn flush_write_out(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>>
    where
        S: AsyncWrite + Unpin,
    {
        loop {
            if self.write_out.is_empty() {
                return Poll::Ready(Ok(()));
            }

            match AsyncWrite::poll_write(Pin::new(&mut self.inner), cx, &self.write_out) {
                Poll::Ready(Ok(0)) => return Poll::Ready(Err(io::ErrorKind::WriteZero.into())),
                Poll::Ready(Ok(n)) => self.write_out = self.write_out.split_off(n),
                Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
                Poll::Pending => return Poll::Pending,
            };
        }
    }
}

impl<S> AsyncRead for DeflateOutput<S>
where
    S: AsyncRead + Unpin,
{
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<Result<usize, io::Error>> {
        // We use a `this` variable because the compiler doesn't allow multiple mutable borrows
        // across a `Deref`.
        let this = &mut *self;

        loop {
            // Read from `self.inner` into `self.read_interm` if necessary.
            if this.read_interm.is_empty() && !this.inner_read_eof {
                this.read_interm
                    .resize(this.read_interm.capacity() + 256, 0);

                match AsyncRead::poll_read(Pin::new(&mut this.inner), cx, &mut this.read_interm) {
                    Poll::Ready(Ok(0)) => {
                        this.inner_read_eof = true;
                        this.read_interm.clear();
                    }
                    Poll::Ready(Ok(n)) => this.read_interm.truncate(n),
                    Poll::Ready(Err(err)) => {
                        this.read_interm.clear();
                        return Poll::Ready(Err(err));
                    }
                    Poll::Pending => {
                        this.read_interm.clear();
                        return Poll::Pending;
                    }
                }
            }
            debug_assert!(!this.read_interm.is_empty() || this.inner_read_eof);

            let before_out = this.decompress.total_out();
            let before_in = this.decompress.total_in();
            let ret = this.decompress.decompress(
                &this.read_interm,
                buf,
                if this.inner_read_eof {
                    flate2::FlushDecompress::Finish
                } else {
                    flate2::FlushDecompress::None
                },
            )?;

            // Remove from `self.read_interm` the bytes consumed by the decompressor.
            let consumed = (this.decompress.total_in() - before_in) as usize;
            this.read_interm = this.read_interm.split_off(consumed);

            let read = (this.decompress.total_out() - before_out) as usize;
            if read != 0 || ret == flate2::Status::StreamEnd {
                return Poll::Ready(Ok(read));
            }
        }
    }
}

impl<S> AsyncWrite for DeflateOutput<S>
where
    S: AsyncWrite + Unpin,
{
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<Result<usize, io::Error>> {
        // We use a `this` variable because the compiler doesn't allow multiple mutable borrows
        // across a `Deref`.
        let this = &mut *self;

        // We don't want to accumulate too much data in `self.write_out`, so we only proceed if it
        // is empty.
        ready!(this.flush_write_out(cx))?;

        // We special-case this, otherwise an empty buffer would make the loop below infinite.
        if buf.is_empty() {
            return Poll::Ready(Ok(0));
        }

        // Unfortunately, the compressor might be in a "flushing mode", not accepting any input
        // data. We don't want to return `Ok(0)` in that situation, as that would be wrong.
        // Instead, we invoke the compressor in a loop until it accepts some of our data.
        loop {
            let before_in = this.compress.total_in();
            this.write_out.reserve(256); // compress_vec uses the Vec's capacity
            let ret = this.compress.compress_vec(
                buf,
                &mut this.write_out,
                flate2::FlushCompress::None,
            )?;
            let written = (this.compress.total_in() - before_in) as usize;

            if written != 0 || ret == flate2::Status::StreamEnd {
                return Poll::Ready(Ok(written));
            }
        }
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        // We use a `this` variable because the compiler doesn't allow multiple mutable borrows
        // across a `Deref`.
        let this = &mut *self;

        ready!(this.flush_write_out(cx))?;
        this.compress
            .compress_vec(&[], &mut this.write_out, flate2::FlushCompress::Sync)?;

        loop {
            ready!(this.flush_write_out(cx))?;

            debug_assert!(this.write_out.is_empty());
            // We ask the compressor to flush everything into `self.write_out`.
            this.write_out.reserve(256); // compress_vec uses the Vec's capacity
            this.compress
                .compress_vec(&[], &mut this.write_out, flate2::FlushCompress::None)?;
            if this.write_out.is_empty() {
                break;
            }
        }

        AsyncWrite::poll_flush(Pin::new(&mut this.inner), cx)
    }

    fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        // We use a `this` variable because the compiler doesn't allow multiple mutable borrows
        // across a `Deref`.
        let this = &mut *self;

        loop {
            ready!(this.flush_write_out(cx))?;

            // We ask the compressor to flush everything into `self.write_out`.
            debug_assert!(this.write_out.is_empty());
            this.write_out.reserve(256); // compress_vec uses the Vec's capacity
            this.compress
                .compress_vec(&[], &mut this.write_out, flate2::FlushCompress::Finish)?;
            if this.write_out.is_empty() {
                break;
            }
        }

        AsyncWrite::poll_close(Pin::new(&mut this.inner), cx)
    }
}