1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use futures::prelude::*;
use instant::Instant;
use libp2p_core::{InboundUpgrade, OutboundUpgrade, UpgradeInfo};
use libp2p_swarm::NegotiatedSubstream;
use rand::{distributions, prelude::*};
use std::{io, iter, time::Duration};
use void::Void;

/// The `Ping` protocol upgrade.
///
/// The ping protocol sends 32 bytes of random data in configurable
/// intervals over a single outbound substream, expecting to receive
/// the same bytes as a response. At the same time, incoming pings
/// on inbound substreams are answered by sending back the received bytes.
///
/// At most a single inbound and outbound substream is kept open at
/// any time. In case of a ping timeout or another error on a substream, the
/// substream is dropped. If a configurable number of consecutive
/// outbound pings fail, the connection is closed.
///
/// Successful pings report the round-trip time.
///
/// > **Note**: The round-trip time of a ping may be subject to delays induced
/// >           by the underlying transport, e.g. in the case of TCP there is
/// >           Nagle's algorithm, delayed acks and similar configuration options
/// >           which can affect latencies especially on otherwise low-volume
/// >           connections.
#[derive(Default, Debug, Copy, Clone)]
pub struct Ping;

const PING_SIZE: usize = 32;

impl UpgradeInfo for Ping {
    type Info = &'static [u8];
    type InfoIter = iter::Once<Self::Info>;

    fn protocol_info(&self) -> Self::InfoIter {
        iter::once(b"/ipfs/ping/1.0.0")
    }
}

impl InboundUpgrade<NegotiatedSubstream> for Ping {
    type Output = NegotiatedSubstream;
    type Error = Void;
    type Future = future::Ready<Result<Self::Output, Self::Error>>;

    fn upgrade_inbound(self, stream: NegotiatedSubstream, _: Self::Info) -> Self::Future {
        future::ok(stream)
    }
}

impl OutboundUpgrade<NegotiatedSubstream> for Ping {
    type Output = NegotiatedSubstream;
    type Error = Void;
    type Future = future::Ready<Result<Self::Output, Self::Error>>;

    fn upgrade_outbound(self, stream: NegotiatedSubstream, _: Self::Info) -> Self::Future {
        future::ok(stream)
    }
}

/// Sends a ping and waits for the pong.
pub async fn send_ping<S>(mut stream: S) -> io::Result<(S, Duration)>
where
    S: AsyncRead + AsyncWrite + Unpin,
{
    let payload: [u8; PING_SIZE] = thread_rng().sample(distributions::Standard);
    stream.write_all(&payload).await?;
    stream.flush().await?;
    let started = Instant::now();
    let mut recv_payload = [0u8; PING_SIZE];
    stream.read_exact(&mut recv_payload).await?;
    if recv_payload == payload {
        Ok((stream, started.elapsed()))
    } else {
        Err(io::Error::new(
            io::ErrorKind::InvalidData,
            "Ping payload mismatch",
        ))
    }
}

/// Waits for a ping and sends a pong.
pub async fn recv_ping<S>(mut stream: S) -> io::Result<S>
where
    S: AsyncRead + AsyncWrite + Unpin,
{
    let mut payload = [0u8; PING_SIZE];
    stream.read_exact(&mut payload).await?;
    stream.write_all(&payload).await?;
    stream.flush().await?;
    Ok(stream)
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures::StreamExt;
    use libp2p_core::{
        multiaddr::multiaddr,
        transport::{memory::MemoryTransport, Transport},
    };
    use rand::{thread_rng, Rng};
    use std::time::Duration;

    #[test]
    fn ping_pong() {
        let mem_addr = multiaddr![Memory(thread_rng().gen::<u64>())];
        let mut transport = MemoryTransport::new().boxed();
        transport.listen_on(mem_addr).unwrap();

        let listener_addr = transport
            .select_next_some()
            .now_or_never()
            .and_then(|ev| ev.into_new_address())
            .expect("MemoryTransport not listening on an address!");

        async_std::task::spawn(async move {
            let transport_event = transport.next().await.unwrap();
            let (listener_upgrade, _) = transport_event.into_incoming().unwrap();
            let conn = listener_upgrade.await.unwrap();
            recv_ping(conn).await.unwrap();
        });

        async_std::task::block_on(async move {
            let c = MemoryTransport::new()
                .dial(listener_addr)
                .unwrap()
                .await
                .unwrap();
            let (_, rtt) = send_ping(c).await.unwrap();
            assert!(rtt > Duration::from_secs(0));
        });
    }
}