1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2020 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! The `pnet` protocol implements *Pre-shared Key Based Private Networks in libp2p*,
//! as specified in [the spec](https://github.com/libp2p/specs/blob/master/pnet/Private-Networks-PSK-V1.md)
//!
//! Libp2p nodes configured with a pre-shared key can only communicate with other nodes with
//! the same key.
mod crypt_writer;
use crypt_writer::CryptWriter;
use futures::prelude::*;
use log::trace;
use pin_project::pin_project;
use rand::RngCore;
use salsa20::{
    cipher::{KeyIvInit, StreamCipher},
    Salsa20, XSalsa20,
};
use sha3::{digest::ExtendableOutput, Shake128};
use std::{
    error,
    fmt::{self, Write},
    io,
    io::Error as IoError,
    num::ParseIntError,
    pin::Pin,
    str::FromStr,
    task::{Context, Poll},
};

const KEY_SIZE: usize = 32;
const NONCE_SIZE: usize = 24;
const WRITE_BUFFER_SIZE: usize = 1024;
const FINGERPRINT_SIZE: usize = 16;

/// A pre-shared key, consisting of 32 bytes of random data.
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct PreSharedKey([u8; KEY_SIZE]);

impl PreSharedKey {
    /// Create a new pre shared key from raw bytes
    pub fn new(data: [u8; KEY_SIZE]) -> Self {
        Self(data)
    }

    /// Compute PreSharedKey fingerprint identical to the go-libp2p fingerprint.
    /// The computation of the fingerprint is not specified in the spec.
    ///
    /// This provides a way to check that private keys are properly configured
    /// without dumping the key itself to the console.
    pub fn fingerprint(&self) -> Fingerprint {
        use std::io::{Read, Write};
        let mut enc = [0u8; 64];
        let nonce: [u8; 8] = *b"finprint";
        let mut out = [0u8; 16];
        let mut cipher = Salsa20::new(&self.0.into(), &nonce.into());
        cipher.apply_keystream(&mut enc);
        let mut hasher = Shake128::default();
        hasher.write_all(&enc).expect("shake128 failed");
        hasher
            .finalize_xof()
            .read_exact(&mut out)
            .expect("shake128 failed");
        Fingerprint(out)
    }
}

fn parse_hex_key(s: &str) -> Result<[u8; KEY_SIZE], KeyParseError> {
    if s.len() == KEY_SIZE * 2 {
        let mut r = [0u8; KEY_SIZE];
        for i in 0..KEY_SIZE {
            r[i] = u8::from_str_radix(&s[i * 2..i * 2 + 2], 16)
                .map_err(KeyParseError::InvalidKeyChar)?;
        }
        Ok(r)
    } else {
        Err(KeyParseError::InvalidKeyLength)
    }
}

fn to_hex(bytes: &[u8]) -> String {
    let mut hex = String::with_capacity(bytes.len() * 2);

    for byte in bytes {
        write!(hex, "{:02x}", byte).expect("Can't fail on writing to string");
    }

    hex
}

/// Parses a PreSharedKey from a key file
///
/// currently supports only base16 encoding.
impl FromStr for PreSharedKey {
    type Err = KeyParseError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if let [keytype, encoding, key] = *s.lines().take(3).collect::<Vec<_>>().as_slice() {
            if keytype != "/key/swarm/psk/1.0.0/" {
                return Err(KeyParseError::InvalidKeyType);
            }
            if encoding != "/base16/" {
                return Err(KeyParseError::InvalidKeyEncoding);
            }
            parse_hex_key(key.trim_end()).map(PreSharedKey)
        } else {
            Err(KeyParseError::InvalidKeyFile)
        }
    }
}

impl fmt::Debug for PreSharedKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("PreSharedKey")
            .field(&to_hex(&self.0))
            .finish()
    }
}

/// Dumps a PreSharedKey in key file format compatible with go-libp2p
impl fmt::Display for PreSharedKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "/key/swarm/psk/1.0.0/")?;
        writeln!(f, "/base16/")?;
        writeln!(f, "{}", to_hex(&self.0))
    }
}

/// A PreSharedKey fingerprint computed from a PreSharedKey
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Fingerprint([u8; FINGERPRINT_SIZE]);

/// Dumps the fingerprint as hex
impl fmt::Display for Fingerprint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", to_hex(&self.0))
    }
}

/// Error when parsing a PreSharedKey
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum KeyParseError {
    /// file does not have the expected structure
    InvalidKeyFile,
    /// unsupported key type
    InvalidKeyType,
    /// unsupported key encoding. Currently only base16 is supported
    InvalidKeyEncoding,
    /// Key is of the wrong length
    InvalidKeyLength,
    /// key string contains a char that is not consistent with the specified encoding
    InvalidKeyChar(ParseIntError),
}

impl fmt::Display for KeyParseError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}

impl error::Error for KeyParseError {
    fn source(&self) -> Option<&(dyn error::Error + 'static)> {
        match *self {
            KeyParseError::InvalidKeyChar(ref err) => Some(err),
            _ => None,
        }
    }
}

/// Private network configuration
#[derive(Debug, Copy, Clone)]
pub struct PnetConfig {
    /// the PreSharedKey to use for encryption
    key: PreSharedKey,
}
impl PnetConfig {
    pub fn new(key: PreSharedKey) -> Self {
        Self { key }
    }

    /// upgrade a connection to use pre shared key encryption.
    ///
    /// the upgrade works by both sides exchanging 24 byte nonces and then encrypting
    /// subsequent traffic with XSalsa20
    pub async fn handshake<TSocket>(
        self,
        mut socket: TSocket,
    ) -> Result<PnetOutput<TSocket>, PnetError>
    where
        TSocket: AsyncRead + AsyncWrite + Send + Unpin + 'static,
    {
        trace!("exchanging nonces");
        let mut local_nonce = [0u8; NONCE_SIZE];
        let mut remote_nonce = [0u8; NONCE_SIZE];
        rand::thread_rng().fill_bytes(&mut local_nonce);
        socket
            .write_all(&local_nonce)
            .await
            .map_err(PnetError::HandshakeError)?;
        socket
            .read_exact(&mut remote_nonce)
            .await
            .map_err(PnetError::HandshakeError)?;
        trace!("setting up ciphers");
        let write_cipher = XSalsa20::new(&self.key.0.into(), &local_nonce.into());
        let read_cipher = XSalsa20::new(&self.key.0.into(), &remote_nonce.into());
        Ok(PnetOutput::new(socket, write_cipher, read_cipher))
    }
}

/// The result of a handshake. This implements AsyncRead and AsyncWrite and can therefore
/// be used as base for additional upgrades.
#[pin_project]
pub struct PnetOutput<S> {
    #[pin]
    inner: CryptWriter<S>,
    read_cipher: XSalsa20,
}

impl<S: AsyncRead + AsyncWrite> PnetOutput<S> {
    fn new(inner: S, write_cipher: XSalsa20, read_cipher: XSalsa20) -> Self {
        Self {
            inner: CryptWriter::with_capacity(WRITE_BUFFER_SIZE, inner, write_cipher),
            read_cipher,
        }
    }
}

impl<S: AsyncRead + AsyncWrite> AsyncRead for PnetOutput<S> {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<Result<usize, io::Error>> {
        let this = self.project();
        let result = this.inner.get_pin_mut().poll_read(cx, buf);
        if let Poll::Ready(Ok(size)) = &result {
            trace!("read {} bytes", size);
            this.read_cipher.apply_keystream(&mut buf[..*size]);
            trace!("decrypted {} bytes", size);
        }
        result
    }
}

impl<S: AsyncRead + AsyncWrite> AsyncWrite for PnetOutput<S> {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<Result<usize, io::Error>> {
        self.project().inner.poll_write(cx, buf)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        self.project().inner.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        self.project().inner.poll_close(cx)
    }
}

/// Error when writing or reading private swarms
#[derive(Debug)]
pub enum PnetError {
    /// Error during handshake.
    HandshakeError(IoError),
    /// I/O error.
    IoError(IoError),
}

impl From<IoError> for PnetError {
    #[inline]
    fn from(err: IoError) -> PnetError {
        PnetError::IoError(err)
    }
}

impl error::Error for PnetError {
    fn cause(&self) -> Option<&dyn error::Error> {
        match *self {
            PnetError::HandshakeError(ref err) => Some(err),
            PnetError::IoError(ref err) => Some(err),
        }
    }
}

impl fmt::Display for PnetError {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        match self {
            PnetError::HandshakeError(e) => write!(f, "Handshake error: {}", e),
            PnetError::IoError(e) => write!(f, "I/O error: {}", e),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::*;

    impl Arbitrary for PreSharedKey {
        fn arbitrary(g: &mut Gen) -> PreSharedKey {
            let key = core::array::from_fn(|_| u8::arbitrary(g));
            PreSharedKey(key)
        }
    }

    #[test]
    fn psk_tostring_parse() {
        fn prop(key: PreSharedKey) -> bool {
            let text = key.to_string();
            text.parse::<PreSharedKey>()
                .map(|res| res == key)
                .unwrap_or(false)
        }
        QuickCheck::new()
            .tests(10)
            .quickcheck(prop as fn(PreSharedKey) -> _);
    }

    #[test]
    fn psk_parse_failure() {
        use KeyParseError::*;
        assert_eq!("".parse::<PreSharedKey>().unwrap_err(), InvalidKeyFile);
        assert_eq!(
            "a\nb\nc".parse::<PreSharedKey>().unwrap_err(),
            InvalidKeyType
        );
        assert_eq!(
            "/key/swarm/psk/1.0.0/\nx\ny"
                .parse::<PreSharedKey>()
                .unwrap_err(),
            InvalidKeyEncoding
        );
        assert_eq!(
            "/key/swarm/psk/1.0.0/\n/base16/\ny"
                .parse::<PreSharedKey>()
                .unwrap_err(),
            InvalidKeyLength
        );
    }

    #[test]
    fn fingerprint() {
        // checked against go-ipfs output
        let key = "/key/swarm/psk/1.0.0/\n/base16/\n6189c5cf0b87fb800c1a9feeda73c6ab5e998db48fb9e6a978575c770ceef683".parse::<PreSharedKey>().unwrap();
        let expected = "45fc986bbc9388a11d939df26f730f0c";
        let actual = key.fingerprint().to_string();
        assert_eq!(expected, actual);
    }
}