1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
// SPDX-License-Identifier: MIT
use std::{
fmt,
hash::{Hash, Hasher},
mem,
};
/// The address of a netlink socket
///
/// A netlink address is made of two parts: the unicast address of the socket, called _port number_ or _PID_, and the
/// multicast address called _group ID_. In this library, we've chosen to stick to the "port number" terminology, since
/// PID can be confused with process ID. However, the netlink man page mostly uses PID.
///
/// ## Port number
///
/// Sockets in kernel space have 0 as a port number. For sockets opened by a user-space process, the port number can
/// either be assigned by the process itself, or by the kernel. The only constraint is that this port number must be
/// unique: two netlink sockets created by a given process must have a different port number. However, netlinks sockets
/// created by different processes can have the same port number.
///
/// ### Port number assigned by the kernel
///
/// One way to set the port number is to let the kernel assign it, by calling [`Socket::bind`][bind] with a port number set to
/// 0. The kernel will usually use the process ID as port number for the first netlink socket created by the process,
/// which is why the socket port number is also called PID. For example:
///
/// ```rust
/// use std::process;
/// use netlink_sys::{
/// protocols::NETLINK_ROUTE,
/// SocketAddr, Socket,
/// };
///
/// let mut socket = Socket::new(NETLINK_ROUTE).unwrap();
/// // The first parameter is the port number. By setting it to 0 we ask the kernel to pick a port for us
/// let mut addr = SocketAddr::new(0, 0);
/// socket.bind(&addr).unwrap();
/// // Retrieve the socket address
/// socket.get_address(&mut addr).unwrap();
/// // the socket port number should be equal to the process ID, but there is no guarantee
/// println!("socket port number = {}, process ID = {}", addr.port_number(), process::id());
///
/// let mut socket2 = Socket::new(NETLINK_ROUTE).unwrap();
/// let mut addr2 = SocketAddr::new(0, 0);
/// socket2.bind(&addr2).unwrap();
/// socket2.get_address(&mut addr2).unwrap();
/// // the unicast address picked by the kernel for the second socket should be different
/// assert!(addr.port_number() != addr2.port_number());
/// ```
///
/// Note that it's a little tedious to create a socket address, call `bind` and then retrive the address with
/// [`Socket::get_address`][get_addr]. To avoid this boilerplate you can use [`Socket::bind_auto`][bind_auto]:
///
/// ```rust
/// use netlink_sys::{protocols::NETLINK_ROUTE, Socket, SocketAddr};
/// use std::process;
///
/// let mut socket = Socket::new(NETLINK_ROUTE).unwrap();
/// let addr = socket.bind_auto().unwrap();
/// println!("socket port number = {}", addr.port_number());
/// ```
///
/// ### Setting the port number manually
///
/// The application can also pick the port number by calling Socket::bind with an address with a non-zero port
/// number. However, it must ensure that this number is unique for each socket created. For instance:
///
/// ```rust
/// use netlink_sys::{protocols::NETLINK_ROUTE, Socket, SocketAddr};
/// use std::process;
///
/// let mut socket = Socket::new(NETLINK_ROUTE).unwrap();
/// // set the socket port number to 2
/// let mut addr = SocketAddr::new(2, 0);
/// socket.bind(&addr).unwrap();
/// // Retrieve the socket address
/// socket.get_address(&mut addr).unwrap();
/// assert_eq!(2, addr.port_number());
///
/// // Creating a second socket with the same port number fails
/// let mut socket2 = Socket::new(NETLINK_ROUTE).unwrap();
/// let mut addr2 = SocketAddr::new(2, 0);
/// socket2.bind(&addr2).unwrap_err();
/// ```
///
/// [bind]: crate::Socket::bind
/// [bind_auto]: crate::Socket::bind_auto
/// [get_addr]: crate::Socket::get_address
#[derive(Copy, Clone)]
pub struct SocketAddr(pub(crate) libc::sockaddr_nl);
impl Hash for SocketAddr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.nl_family.hash(state);
self.0.nl_pid.hash(state);
self.0.nl_groups.hash(state);
}
}
impl PartialEq for SocketAddr {
fn eq(&self, other: &SocketAddr) -> bool {
self.0.nl_family == other.0.nl_family
&& self.0.nl_pid == other.0.nl_pid
&& self.0.nl_groups == other.0.nl_groups
}
}
impl fmt::Debug for SocketAddr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"SocketAddr(nl_family={}, nl_pid={}, nl_groups={})",
self.0.nl_family, self.0.nl_pid, self.0.nl_groups
)
}
}
impl Eq for SocketAddr {}
impl fmt::Display for SocketAddr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"address family: {}, pid: {}, multicast groups: {})",
self.0.nl_family, self.0.nl_pid, self.0.nl_groups
)
}
}
impl SocketAddr {
/// Create a new socket address for with th
pub fn new(port_number: u32, multicast_groups: u32) -> Self {
let mut addr: libc::sockaddr_nl = unsafe { mem::zeroed() };
addr.nl_family = libc::PF_NETLINK as libc::sa_family_t;
addr.nl_pid = port_number;
addr.nl_groups = multicast_groups;
SocketAddr(addr)
}
/// Get the unicast address of this socket
pub fn port_number(&self) -> u32 {
self.0.nl_pid
}
/// Get the multicast groups of this socket
pub fn multicast_groups(&self) -> u32 {
self.0.nl_groups
}
pub(crate) fn as_raw(&self) -> (*const libc::sockaddr, libc::socklen_t) {
let addr_ptr = &self.0 as *const libc::sockaddr_nl as *const libc::sockaddr;
// \ / \ /
// +---------------+---------------+ +----------+---------+
// | |
// v |
// create a raw pointer to the sockaddr_nl |
// v
// cast *sockaddr_nl -> *sockaddr
//
// This kind of things seems to be pretty usual when using C APIs from Rust. It could be
// written in a shorter way thank to type inference:
//
// let addr_ptr: *const libc:sockaddr = &self.0 as *const _ as *const _;
//
// But since this is my first time dealing with this kind of things I chose the most
// explicit form.
let addr_len = mem::size_of::<libc::sockaddr_nl>() as libc::socklen_t;
(addr_ptr, addr_len)
}
pub(crate) fn as_raw_mut(&mut self) -> (*mut libc::sockaddr, libc::socklen_t) {
let addr_ptr = &mut self.0 as *mut libc::sockaddr_nl as *mut libc::sockaddr;
let addr_len = mem::size_of::<libc::sockaddr_nl>() as libc::socklen_t;
(addr_ptr, addr_len)
}
}