1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
// SPDX-License-Identifier: MIT
use std::{
io::{Error, Result},
mem,
os::unix::io::{AsRawFd, FromRawFd, RawFd},
};
use crate::SocketAddr;
/// A netlink socket.
///
/// # Example
///
/// In this example we:
///
/// 1. open a new socket
/// 2. send a message to the kernel
/// 3. read the reponse
///
/// ```rust
/// use netlink_sys::{protocols::NETLINK_ROUTE, Socket, SocketAddr};
/// use std::process;
///
/// // open a new socket for the NETLINK_ROUTE subsystem (see "man 7 rtnetlink")
/// let mut socket = Socket::new(NETLINK_ROUTE).unwrap();
/// // address of the remote peer we'll send a message to. This particular address is for the kernel
/// let kernel_addr = SocketAddr::new(0, 0);
/// // this is a valid message for listing the network links on the system
/// let pkt = vec![
/// 0x14, 0x00, 0x00, 0x00, 0x12, 0x00, 0x01, 0x03, 0xfd, 0xfe, 0x38, 0x5c, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00,
/// ];
/// // send the message to the kernel
/// let n_sent = socket.send_to(&pkt[..], &kernel_addr, 0).unwrap();
/// assert_eq!(n_sent, pkt.len());
/// // buffer for receiving the response
/// let mut buf = vec![0; 4096];
/// loop {
/// // receive a datagram
/// let (n_received, sender_addr) = socket.recv_from(&mut &mut buf[..], 0).unwrap();
/// assert_eq!(sender_addr, kernel_addr);
/// println!("received datagram {:?}", &buf[..n_received]);
/// if buf[4] == 2 && buf[5] == 0 {
/// println!("the kernel responded with an error");
/// return;
/// }
/// if buf[4] == 3 && buf[5] == 0 {
/// println!("end of dump");
/// return;
/// }
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Socket(RawFd);
impl AsRawFd for Socket {
fn as_raw_fd(&self) -> RawFd {
self.0
}
}
impl FromRawFd for Socket {
unsafe fn from_raw_fd(fd: RawFd) -> Self {
Socket(fd)
}
}
impl Drop for Socket {
fn drop(&mut self) {
unsafe { libc::close(self.0) };
}
}
impl Socket {
/// Open a new socket for the given netlink subsystem. `protocol` must be one of the
/// [`netlink_sys::protocols`][protos] constants.
///
/// [protos]: crate::protocols
pub fn new(protocol: isize) -> Result<Self> {
let res = unsafe {
libc::socket(
libc::PF_NETLINK,
libc::SOCK_DGRAM | libc::SOCK_CLOEXEC,
protocol as libc::c_int,
)
};
if res < 0 {
return Err(Error::last_os_error());
}
Ok(Socket(res))
}
/// Bind the socket to the given address
pub fn bind(&mut self, addr: &SocketAddr) -> Result<()> {
let (addr_ptr, addr_len) = addr.as_raw();
let res = unsafe { libc::bind(self.0, addr_ptr, addr_len) };
if res < 0 {
return Err(Error::last_os_error());
}
Ok(())
}
/// Bind the socket to an address assigned by the kernel, and return that address.
pub fn bind_auto(&mut self) -> Result<SocketAddr> {
let mut addr = SocketAddr::new(0, 0);
self.bind(&addr)?;
self.get_address(&mut addr)?;
Ok(addr)
}
/// Get the socket address
pub fn get_address(&self, addr: &mut SocketAddr) -> Result<()> {
let (addr_ptr, mut addr_len) = addr.as_raw_mut();
let addr_len_copy = addr_len;
let addr_len_ptr = &mut addr_len as *mut libc::socklen_t;
let res = unsafe { libc::getsockname(self.0, addr_ptr, addr_len_ptr) };
if res < 0 {
return Err(Error::last_os_error());
}
assert_eq!(addr_len, addr_len_copy);
Ok(())
}
// when building with --features smol we don't need this
#[allow(dead_code)]
/// Make this socket non-blocking
pub fn set_non_blocking(&self, non_blocking: bool) -> Result<()> {
let mut non_blocking = non_blocking as libc::c_int;
let res = unsafe { libc::ioctl(self.0, libc::FIONBIO, &mut non_blocking) };
if res < 0 {
return Err(Error::last_os_error());
}
Ok(())
}
/// Connect the socket to the given address. Netlink is a connection-less protocol, so a socket can communicate with
/// multiple peers with the [`Socket::send_to`] and [`Socket::recv_from`] methods. However, if the socket only needs
/// to communicate with one peer, it is convenient not to have to bother with the peer address. This is what
/// `connect` is for. After calling `connect`, [`Socket::send`] and [`Socket::recv`] respectively send and receive
/// datagrams to and from `remote_addr`.
///
/// # Examples
///
/// In this example we:
///
/// 1. open a socket
/// 2. connect it to the kernel with [`Socket::connect`]
/// 3. send a request to the kernel with [`Socket::send`]
/// 4. read the response (which can span over several messages) [`Socket::recv`]
///
/// ```rust
/// use netlink_sys::{protocols::NETLINK_ROUTE, Socket, SocketAddr};
/// use std::process;
///
/// let mut socket = Socket::new(NETLINK_ROUTE).unwrap();
/// let _ = socket.bind_auto().unwrap();
/// let kernel_addr = SocketAddr::new(0, 0);
/// socket.connect(&kernel_addr).unwrap();
/// // This is a valid message for listing the network links on the system
/// let msg = vec![
/// 0x14, 0x00, 0x00, 0x00, 0x12, 0x00, 0x01, 0x03, 0xfd, 0xfe, 0x38, 0x5c, 0x00, 0x00, 0x00,
/// 0x00, 0x00, 0x00, 0x00, 0x00,
/// ];
/// let n_sent = socket.send(&msg[..], 0).unwrap();
/// assert_eq!(n_sent, msg.len());
/// // buffer for receiving the response
/// let mut buf = vec![0; 4096];
/// loop {
/// let mut n_received = socket.recv(&mut &mut buf[..], 0).unwrap();
/// println!("received {:?}", &buf[..n_received]);
/// if buf[4] == 2 && buf[5] == 0 {
/// println!("the kernel responded with an error");
/// return;
/// }
/// if buf[4] == 3 && buf[5] == 0 {
/// println!("end of dump");
/// return;
/// }
/// }
/// ```
pub fn connect(&self, remote_addr: &SocketAddr) -> Result<()> {
// FIXME:
//
// Event though for SOCK_DGRAM sockets there's no IO, if our socket is non-blocking,
// connect() might return EINPROGRESS. In theory, the right way to treat EINPROGRESS would
// be to ignore the error, and let the user poll the socket to check when it becomes
// writable, indicating that the connection succeeded. The code already exists in mio for
// TcpStream:
//
// > pub fn connect(stream: net::TcpStream, addr: &SocketAddr) -> io::Result<TcpStream> {
// > set_non_block(stream.as_raw_fd())?;
// > match stream.connect(addr) {
// > Ok(..) => {}
// > Err(ref e) if e.raw_os_error() == Some(libc::EINPROGRESS) => {}
// > Err(e) => return Err(e),
// > }
// > Ok(TcpStream { inner: stream })
// > }
//
// In practice, since the connection does not require any IO for SOCK_DGRAM sockets, it
// almost never returns EINPROGRESS and so for now, we just return whatever libc::connect
// returns. If it returns EINPROGRESS, the caller will have to handle the error themself
//
// Refs:
//
// - https://stackoverflow.com/a/14046386/1836144
// - https://lists.isc.org/pipermail/bind-users/2009-August/077527.html
let (addr, addr_len) = remote_addr.as_raw();
let res = unsafe { libc::connect(self.0, addr, addr_len) };
if res < 0 {
return Err(Error::last_os_error());
}
Ok(())
}
// Most of the comments in this method come from a discussion on rust users forum.
// [thread]: https://users.rust-lang.org/t/help-understanding-libc-call/17308/9
//
/// Read a datagram from the socket and return the number of bytes that have been read and the address of the
/// sender. The data being read is copied into `buf`. If `buf` is too small, the datagram is truncated. The
/// supported flags are the `MSG_*` described in `man 2 recvmsg`
///
/// # Warning
///
/// In datagram oriented protocols, `recv` and `recvfrom` receive normally only ONE datagram, but this seems not to
/// be always true for netlink sockets: with some protocols like `NETLINK_AUDIT`, multiple netlink packets can be
/// read with a single call.
pub fn recv_from<B>(&self, buf: &mut B, flags: libc::c_int) -> Result<(usize, SocketAddr)>
where
B: bytes::BufMut,
{
// Create an empty storage for the address. Note that Rust standard library create a
// sockaddr_storage so that it works for any address family, but here, we already know that
// we'll have a Netlink address, so we can create the appropriate storage.
let mut addr = unsafe { mem::zeroed::<libc::sockaddr_nl>() };
// recvfrom takes a *sockaddr as parameter so that it can accept any kind of address
// storage, so we need to create such a pointer for the sockaddr_nl we just initialized.
//
// Create a raw pointer to Cast our raw pointer to a
// our storage. We cannot generic pointer to *sockaddr
// pass it to recvfrom yet. that recvfrom can use
// ^ ^
// | |
// +--------------+---------------+ +---------+--------+
// / \ / \
let addr_ptr = &mut addr as *mut libc::sockaddr_nl as *mut libc::sockaddr;
// Why do we need to pass the address length? We're passing a generic *sockaddr to
// recvfrom. Somehow recvfrom needs to make sure that the address of the received packet
// would fit into the actual type that is behind *sockaddr: it could be a sockaddr_nl but
// also a sockaddr_in, a sockaddr_in6, or even the generic sockaddr_storage that can store
// any address.
let mut addrlen = mem::size_of_val(&addr);
// recvfrom does not take the address length by value (see [thread]), so we need to create
// a pointer to it.
let addrlen_ptr = &mut addrlen as *mut usize as *mut libc::socklen_t;
let chunk = buf.chunk_mut();
// Cast the *mut u8 into *mut void.
// This is equivalent to casting a *char into *void
// See [thread]
// ^
// Create a *mut u8 |
// ^ |
// | |
// +------+-------+ +--------+-------+
// / \ / \
let buf_ptr = chunk.as_mut_ptr() as *mut libc::c_void;
let buf_len = chunk.len() as libc::size_t;
let res = unsafe { libc::recvfrom(self.0, buf_ptr, buf_len, flags, addr_ptr, addrlen_ptr) };
if res < 0 {
return Err(Error::last_os_error());
} else {
// with `MSG_TRUNC` `res` might exceed `buf_len`
let written = std::cmp::min(buf_len, res as usize);
unsafe {
buf.advance_mut(written);
}
}
Ok((res as usize, SocketAddr(addr)))
}
/// For a connected socket, `recv` reads a datagram from the socket. The sender is the remote peer the socket is
/// connected to (see [`Socket::connect`]). See also [`Socket::recv_from`]
pub fn recv<B>(&self, buf: &mut B, flags: libc::c_int) -> Result<usize>
where
B: bytes::BufMut,
{
let chunk = buf.chunk_mut();
let buf_ptr = chunk.as_mut_ptr() as *mut libc::c_void;
let buf_len = chunk.len() as libc::size_t;
let res = unsafe { libc::recv(self.0, buf_ptr, buf_len, flags) };
if res < 0 {
return Err(Error::last_os_error());
} else {
// with `MSG_TRUNC` `res` might exceed `buf_len`
let written = std::cmp::min(buf_len, res as usize);
unsafe {
buf.advance_mut(written);
}
}
Ok(res as usize)
}
/// Receive a full message. Unlike [`Socket::recv_from`], which truncates messages that exceed the length of the
/// buffer passed as argument, this method always reads a whole message, no matter its size.
pub fn recv_from_full(&self) -> Result<(Vec<u8>, SocketAddr)> {
// Peek
let mut buf: Vec<u8> = Vec::new();
let (peek_len, _) = self.recv_from(&mut buf, libc::MSG_PEEK | libc::MSG_TRUNC)?;
// Receive
buf.clear();
buf.reserve(peek_len);
let (rlen, addr) = self.recv_from(&mut buf, 0)?;
assert_eq!(rlen, peek_len);
Ok((buf, addr))
}
/// Send the given buffer `buf` to the remote peer with address `addr`. The supported flags are the `MSG_*` values
/// documented in `man 2 send`.
pub fn send_to(&self, buf: &[u8], addr: &SocketAddr, flags: libc::c_int) -> Result<usize> {
let (addr_ptr, addr_len) = addr.as_raw();
let buf_ptr = buf.as_ptr() as *const libc::c_void;
let buf_len = buf.len() as libc::size_t;
let res = unsafe { libc::sendto(self.0, buf_ptr, buf_len, flags, addr_ptr, addr_len) };
if res < 0 {
return Err(Error::last_os_error());
}
Ok(res as usize)
}
/// For a connected socket, `send` sends the given buffer `buf` to the remote peer the socket is connected to. See
/// also [`Socket::connect`] and [`Socket::send_to`].
pub fn send(&self, buf: &[u8], flags: libc::c_int) -> Result<usize> {
let buf_ptr = buf.as_ptr() as *const libc::c_void;
let buf_len = buf.len() as libc::size_t;
let res = unsafe { libc::send(self.0, buf_ptr, buf_len, flags) };
if res < 0 {
return Err(Error::last_os_error());
}
Ok(res as usize)
}
pub fn set_pktinfo(&mut self, value: bool) -> Result<()> {
let value: libc::c_int = if value { 1 } else { 0 };
setsockopt(self.0, libc::SOL_NETLINK, libc::NETLINK_PKTINFO, value)
}
pub fn get_pktinfo(&self) -> Result<bool> {
let res = getsockopt::<libc::c_int>(self.0, libc::SOL_NETLINK, libc::NETLINK_PKTINFO)?;
Ok(res == 1)
}
pub fn add_membership(&mut self, group: u32) -> Result<()> {
setsockopt(
self.0,
libc::SOL_NETLINK,
libc::NETLINK_ADD_MEMBERSHIP,
group,
)
}
pub fn drop_membership(&mut self, group: u32) -> Result<()> {
setsockopt(
self.0,
libc::SOL_NETLINK,
libc::NETLINK_DROP_MEMBERSHIP,
group,
)
}
// pub fn list_membership(&self) -> Vec<u32> {
// unimplemented!();
// // getsockopt won't be enough here, because we may need to perform 2 calls, and because the
// // length of the list returned by libc::getsockopt is returned by mutating the length
// // argument, which our implementation of getsockopt forbids.
// }
/// `NETLINK_BROADCAST_ERROR` (since Linux 2.6.30). When not set, `netlink_broadcast()` only
/// reports `ESRCH` errors and silently ignore `NOBUFS` errors.
pub fn set_broadcast_error(&mut self, value: bool) -> Result<()> {
let value: libc::c_int = if value { 1 } else { 0 };
setsockopt(
self.0,
libc::SOL_NETLINK,
libc::NETLINK_BROADCAST_ERROR,
value,
)
}
pub fn get_broadcast_error(&self) -> Result<bool> {
let res =
getsockopt::<libc::c_int>(self.0, libc::SOL_NETLINK, libc::NETLINK_BROADCAST_ERROR)?;
Ok(res == 1)
}
/// `NETLINK_NO_ENOBUFS` (since Linux 2.6.30). This flag can be used by unicast and broadcast
/// listeners to avoid receiving `ENOBUFS` errors.
pub fn set_no_enobufs(&mut self, value: bool) -> Result<()> {
let value: libc::c_int = if value { 1 } else { 0 };
setsockopt(self.0, libc::SOL_NETLINK, libc::NETLINK_NO_ENOBUFS, value)
}
pub fn get_no_enobufs(&self) -> Result<bool> {
let res = getsockopt::<libc::c_int>(self.0, libc::SOL_NETLINK, libc::NETLINK_NO_ENOBUFS)?;
Ok(res == 1)
}
/// `NETLINK_LISTEN_ALL_NSID` (since Linux 4.2). When set, this socket will receive netlink
/// notifications from all network namespaces that have an nsid assigned into the network
/// namespace where the socket has been opened. The nsid is sent to user space via an ancillary
/// data.
pub fn set_listen_all_namespaces(&mut self, value: bool) -> Result<()> {
let value: libc::c_int = if value { 1 } else { 0 };
setsockopt(
self.0,
libc::SOL_NETLINK,
libc::NETLINK_LISTEN_ALL_NSID,
value,
)
}
pub fn get_listen_all_namespaces(&self) -> Result<bool> {
let res =
getsockopt::<libc::c_int>(self.0, libc::SOL_NETLINK, libc::NETLINK_LISTEN_ALL_NSID)?;
Ok(res == 1)
}
/// `NETLINK_CAP_ACK` (since Linux 4.2). The kernel may fail to allocate the necessary room
/// for the acknowledgment message back to user space. This option trims off the payload of
/// the original netlink message. The netlink message header is still included, so the user can
/// guess from the sequence number which message triggered the acknowledgment.
pub fn set_cap_ack(&mut self, value: bool) -> Result<()> {
let value: libc::c_int = if value { 1 } else { 0 };
setsockopt(self.0, libc::SOL_NETLINK, libc::NETLINK_CAP_ACK, value)
}
pub fn get_cap_ack(&self) -> Result<bool> {
let res = getsockopt::<libc::c_int>(self.0, libc::SOL_NETLINK, libc::NETLINK_CAP_ACK)?;
Ok(res == 1)
}
}
/// Wrapper around `getsockopt`:
///
/// ```no_rust
/// int getsockopt(int socket, int level, int option_name, void *restrict option_value, socklen_t *restrict option_len);
/// ```
pub(crate) fn getsockopt<T: Copy>(fd: RawFd, level: libc::c_int, option: libc::c_int) -> Result<T> {
// Create storage for the options we're fetching
let mut slot: T = unsafe { mem::zeroed() };
// Create a mutable raw pointer to the storage so that getsockopt can fill the value
let slot_ptr = &mut slot as *mut T as *mut libc::c_void;
// Let getsockopt know how big our storage is
let mut slot_len = mem::size_of::<T>() as libc::socklen_t;
// getsockopt takes a mutable pointer to the length, because for some options like
// NETLINK_LIST_MEMBERSHIP where the option value is a list with arbitrary length,
// getsockopt uses this parameter to signal how big the storage needs to be.
let slot_len_ptr = &mut slot_len as *mut libc::socklen_t;
let res = unsafe { libc::getsockopt(fd, level, option, slot_ptr, slot_len_ptr) };
if res < 0 {
return Err(Error::last_os_error());
}
// Ignore the options that require the legnth to be set by getsockopt.
// We'll deal with them individually.
assert_eq!(slot_len as usize, mem::size_of::<T>());
Ok(slot)
}
// adapted from rust standard library
fn setsockopt<T>(fd: RawFd, level: libc::c_int, option: libc::c_int, payload: T) -> Result<()> {
let payload = &payload as *const T as *const libc::c_void;
let payload_len = mem::size_of::<T>() as libc::socklen_t;
let res = unsafe { libc::setsockopt(fd, level, option, payload, payload_len) };
if res < 0 {
return Err(Error::last_os_error());
}
Ok(())
}
#[cfg(test)]
mod test {
use super::*;
use crate::protocols::NETLINK_ROUTE;
#[test]
fn new() {
Socket::new(NETLINK_ROUTE).unwrap();
}
#[test]
fn connect() {
let sock = Socket::new(NETLINK_ROUTE).unwrap();
sock.connect(&SocketAddr::new(0, 0)).unwrap();
}
#[test]
fn bind() {
let mut sock = Socket::new(NETLINK_ROUTE).unwrap();
sock.bind(&SocketAddr::new(4321, 0)).unwrap();
}
#[test]
fn bind_auto() {
let mut sock = Socket::new(NETLINK_ROUTE).unwrap();
let addr = sock.bind_auto().unwrap();
// make sure that the address we got from the kernel is there
assert!(addr.port_number() != 0);
}
#[test]
fn set_non_blocking() {
let sock = Socket::new(NETLINK_ROUTE).unwrap();
sock.set_non_blocking(true).unwrap();
sock.set_non_blocking(false).unwrap();
}
#[test]
fn options() {
let mut sock = Socket::new(NETLINK_ROUTE).unwrap();
sock.set_cap_ack(true).unwrap();
assert!(sock.get_cap_ack().unwrap());
sock.set_cap_ack(false).unwrap();
assert!(!sock.get_cap_ack().unwrap());
sock.set_no_enobufs(true).unwrap();
assert!(sock.get_no_enobufs().unwrap());
sock.set_no_enobufs(false).unwrap();
assert!(!sock.get_no_enobufs().unwrap());
sock.set_broadcast_error(true).unwrap();
assert!(sock.get_broadcast_error().unwrap());
sock.set_broadcast_error(false).unwrap();
assert!(!sock.get_broadcast_error().unwrap());
// FIXME: these require root permissions
// sock.set_listen_all_namespaces(true).unwrap();
// assert!(sock.get_listen_all_namespaces().unwrap());
// sock.set_listen_all_namespaces(false).unwrap();
// assert!(!sock.get_listen_all_namespaces().unwrap());
}
}