1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
//! # Overview
//!
//! `once_cell` provides two new cell-like types, [`unsync::OnceCell`] and [`sync::OnceCell`]. A `OnceCell`
//! might store arbitrary non-`Copy` types, can be assigned to at most once and provides direct access
//! to the stored contents. The core API looks *roughly* like this (and there's much more inside, read on!):
//!
//! ```rust,ignore
//! impl<T> OnceCell<T> {
//! const fn new() -> OnceCell<T> { ... }
//! fn set(&self, value: T) -> Result<(), T> { ... }
//! fn get(&self) -> Option<&T> { ... }
//! }
//! ```
//!
//! Note that, like with [`RefCell`] and [`Mutex`], the `set` method requires only a shared reference.
//! Because of the single assignment restriction `get` can return a `&T` instead of `Ref<T>`
//! or `MutexGuard<T>`.
//!
//! The `sync` flavor is thread-safe (that is, implements the [`Sync`] trait), while the `unsync` one is not.
//!
//! [`unsync::OnceCell`]: unsync/struct.OnceCell.html
//! [`sync::OnceCell`]: sync/struct.OnceCell.html
//! [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
//! [`Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
//! [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html
//!
//! # Recipes
//!
//! `OnceCell` might be useful for a variety of patterns.
//!
//! ## Safe Initialization of Global Data
//!
//! ```rust
//! use std::{env, io};
//!
//! use once_cell::sync::OnceCell;
//!
//! #[derive(Debug)]
//! pub struct Logger {
//! // ...
//! }
//! static INSTANCE: OnceCell<Logger> = OnceCell::new();
//!
//! impl Logger {
//! pub fn global() -> &'static Logger {
//! INSTANCE.get().expect("logger is not initialized")
//! }
//!
//! fn from_cli(args: env::Args) -> Result<Logger, std::io::Error> {
//! // ...
//! # Ok(Logger {})
//! }
//! }
//!
//! fn main() {
//! let logger = Logger::from_cli(env::args()).unwrap();
//! INSTANCE.set(logger).unwrap();
//! // use `Logger::global()` from now on
//! }
//! ```
//!
//! ## Lazy Initialized Global Data
//!
//! This is essentially the `lazy_static!` macro, but without a macro.
//!
//! ```rust
//! use std::{sync::Mutex, collections::HashMap};
//!
//! use once_cell::sync::OnceCell;
//!
//! fn global_data() -> &'static Mutex<HashMap<i32, String>> {
//! static INSTANCE: OnceCell<Mutex<HashMap<i32, String>>> = OnceCell::new();
//! INSTANCE.get_or_init(|| {
//! let mut m = HashMap::new();
//! m.insert(13, "Spica".to_string());
//! m.insert(74, "Hoyten".to_string());
//! Mutex::new(m)
//! })
//! }
//! ```
//!
//! There are also the [`sync::Lazy`] and [`unsync::Lazy`] convenience types to streamline this pattern:
//!
//! ```rust
//! use std::{sync::Mutex, collections::HashMap};
//! use once_cell::sync::Lazy;
//!
//! static GLOBAL_DATA: Lazy<Mutex<HashMap<i32, String>>> = Lazy::new(|| {
//! let mut m = HashMap::new();
//! m.insert(13, "Spica".to_string());
//! m.insert(74, "Hoyten".to_string());
//! Mutex::new(m)
//! });
//!
//! fn main() {
//! println!("{:?}", GLOBAL_DATA.lock().unwrap());
//! }
//! ```
//!
//! Note that the variable that holds `Lazy` is declared as `static`, *not*
//! `const`. This is important: using `const` instead compiles, but works wrong.
//!
//! [`sync::Lazy`]: sync/struct.Lazy.html
//! [`unsync::Lazy`]: unsync/struct.Lazy.html
//!
//! ## General purpose lazy evaluation
//!
//! Unlike `lazy_static!`, `Lazy` works with local variables.
//!
//! ```rust
//! use once_cell::unsync::Lazy;
//!
//! fn main() {
//! let ctx = vec![1, 2, 3];
//! let thunk = Lazy::new(|| {
//! ctx.iter().sum::<i32>()
//! });
//! assert_eq!(*thunk, 6);
//! }
//! ```
//!
//! If you need a lazy field in a struct, you probably should use `OnceCell`
//! directly, because that will allow you to access `self` during initialization.
//!
//! ```rust
//! use std::{fs, path::PathBuf};
//!
//! use once_cell::unsync::OnceCell;
//!
//! struct Ctx {
//! config_path: PathBuf,
//! config: OnceCell<String>,
//! }
//!
//! impl Ctx {
//! pub fn get_config(&self) -> Result<&str, std::io::Error> {
//! let cfg = self.config.get_or_try_init(|| {
//! fs::read_to_string(&self.config_path)
//! })?;
//! Ok(cfg.as_str())
//! }
//! }
//! ```
//!
//! ## Lazily Compiled Regex
//!
//! This is a `regex!` macro which takes a string literal and returns an
//! *expression* that evaluates to a `&'static Regex`:
//!
//! ```
//! macro_rules! regex {
//! ($re:literal $(,)?) => {{
//! static RE: once_cell::sync::OnceCell<regex::Regex> = once_cell::sync::OnceCell::new();
//! RE.get_or_init(|| regex::Regex::new($re).unwrap())
//! }};
//! }
//! ```
//!
//! This macro can be useful to avoid the "compile regex on every loop iteration" problem.
//!
//! ## Runtime `include_bytes!`
//!
//! The `include_bytes` macro is useful to include test resources, but it slows
//! down test compilation a lot. An alternative is to load the resources at
//! runtime:
//!
//! ```
//! use std::path::Path;
//!
//! use once_cell::sync::OnceCell;
//!
//! pub struct TestResource {
//! path: &'static str,
//! cell: OnceCell<Vec<u8>>,
//! }
//!
//! impl TestResource {
//! pub const fn new(path: &'static str) -> TestResource {
//! TestResource { path, cell: OnceCell::new() }
//! }
//! pub fn bytes(&self) -> &[u8] {
//! self.cell.get_or_init(|| {
//! let dir = std::env::var("CARGO_MANIFEST_DIR").unwrap();
//! let path = Path::new(dir.as_str()).join(self.path);
//! std::fs::read(&path).unwrap_or_else(|_err| {
//! panic!("failed to load test resource: {}", path.display())
//! })
//! }).as_slice()
//! }
//! }
//!
//! static TEST_IMAGE: TestResource = TestResource::new("test_data/lena.png");
//!
//! #[test]
//! fn test_sobel_filter() {
//! let rgb: &[u8] = TEST_IMAGE.bytes();
//! // ...
//! # drop(rgb);
//! }
//! ```
//!
//! ## `lateinit`
//!
//! `LateInit` type for delayed initialization. It is reminiscent of Kotlin's
//! `lateinit` keyword and allows construction of cyclic data structures:
//!
//!
//! ```
//! use once_cell::sync::OnceCell;
//!
//! #[derive(Debug)]
//! pub struct LateInit<T> { cell: OnceCell<T> }
//!
//! impl<T> LateInit<T> {
//! pub fn init(&self, value: T) {
//! assert!(self.cell.set(value).is_ok())
//! }
//! }
//!
//! impl<T> Default for LateInit<T> {
//! fn default() -> Self { LateInit { cell: OnceCell::default() } }
//! }
//!
//! impl<T> std::ops::Deref for LateInit<T> {
//! type Target = T;
//! fn deref(&self) -> &T {
//! self.cell.get().unwrap()
//! }
//! }
//!
//! #[derive(Default, Debug)]
//! struct A<'a> {
//! b: LateInit<&'a B<'a>>,
//! }
//!
//! #[derive(Default, Debug)]
//! struct B<'a> {
//! a: LateInit<&'a A<'a>>
//! }
//!
//! fn build_cycle() {
//! let a = A::default();
//! let b = B::default();
//! a.b.init(&b);
//! b.a.init(&a);
//! println!("{:?}", a.b.a.b.a);
//! }
//! ```
//!
//! # Comparison with std
//!
//! |`!Sync` types | Access Mode | Drawbacks |
//! |----------------------|------------------------|-----------------------------------------------|
//! |`Cell<T>` | `T` | requires `T: Copy` for `get` |
//! |`RefCell<T>` | `RefMut<T>` / `Ref<T>` | may panic at runtime |
//! |`unsync::OnceCell<T>` | `&T` | assignable only once |
//!
//! |`Sync` types | Access Mode | Drawbacks |
//! |----------------------|------------------------|-----------------------------------------------|
//! |`AtomicT` | `T` | works only with certain `Copy` types |
//! |`Mutex<T>` | `MutexGuard<T>` | may deadlock at runtime, may block the thread |
//! |`sync::OnceCell<T>` | `&T` | assignable only once, may block the thread |
//!
//! Technically, calling `get_or_init` will also cause a panic or a deadlock if it recursively calls
//! itself. However, because the assignment can happen only once, such cases should be more rare than
//! equivalents with `RefCell` and `Mutex`.
//!
//! # Minimum Supported `rustc` Version
//!
//! This crate's minimum supported `rustc` version is `1.56.0`.
//!
//! If only the `std` feature is enabled, MSRV will be updated conservatively, supporting at least latest 8 versions of the compiler.
//! When using other features, like `parking_lot`, MSRV might be updated more frequently, up to the latest stable.
//! In both cases, increasing MSRV is *not* considered a semver-breaking change.
//!
//! # Implementation details
//!
//! The implementation is based on the [`lazy_static`](https://github.com/rust-lang-nursery/lazy-static.rs/)
//! and [`lazy_cell`](https://github.com/indiv0/lazycell/) crates and [`std::sync::Once`]. In some sense,
//! `once_cell` just streamlines and unifies those APIs.
//!
//! To implement a sync flavor of `OnceCell`, this crates uses either a custom
//! re-implementation of `std::sync::Once` or `parking_lot::Mutex`. This is
//! controlled by the `parking_lot` feature (disabled by default). Performance
//! is the same for both cases, but the `parking_lot` based `OnceCell<T>` is
//! smaller by up to 16 bytes.
//!
//! This crate uses `unsafe`.
//!
//! [`std::sync::Once`]: https://doc.rust-lang.org/std/sync/struct.Once.html
//!
//! # F.A.Q.
//!
//! **Should I use lazy_static or once_cell?**
//!
//! To the first approximation, `once_cell` is both more flexible and more convenient than `lazy_static`
//! and should be preferred.
//!
//! Unlike `once_cell`, `lazy_static` supports spinlock-based implementation of blocking which works with
//! `#![no_std]`.
//!
//! `lazy_static` has received significantly more real world testing, but `once_cell` is also a widely
//! used crate.
//!
//! **Should I use the sync or unsync flavor?**
//!
//! Because Rust compiler checks thread safety for you, it's impossible to accidentally use `unsync` where
//! `sync` is required. So, use `unsync` in single-threaded code and `sync` in multi-threaded. It's easy
//! to switch between the two if code becomes multi-threaded later.
//!
//! At the moment, `unsync` has an additional benefit that reentrant initialization causes a panic, which
//! might be easier to debug than a deadlock.
//!
//! **Does this crate support async?**
//!
//! No, but you can use [`async_once_cell`](https://crates.io/crates/async_once_cell) instead.
//!
//! # Related crates
//!
//! * [double-checked-cell](https://github.com/niklasf/double-checked-cell)
//! * [lazy-init](https://crates.io/crates/lazy-init)
//! * [lazycell](https://crates.io/crates/lazycell)
//! * [mitochondria](https://crates.io/crates/mitochondria)
//! * [lazy_static](https://crates.io/crates/lazy_static)
//! * [async_once_cell](https://crates.io/crates/async_once_cell)
//!
//! Most of this crate's functionality is available in `std` in nightly Rust.
//! See the [tracking issue](https://github.com/rust-lang/rust/issues/74465).
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(all(feature = "critical-section", not(feature = "std")))]
#[path = "imp_cs.rs"]
mod imp;
#[cfg(all(feature = "std", feature = "parking_lot"))]
#[path = "imp_pl.rs"]
mod imp;
#[cfg(all(feature = "std", not(feature = "parking_lot")))]
#[path = "imp_std.rs"]
mod imp;
/// Single-threaded version of `OnceCell`.
pub mod unsync {
use core::{
cell::{Cell, UnsafeCell},
fmt, mem,
ops::{Deref, DerefMut},
panic::{RefUnwindSafe, UnwindSafe},
};
use super::unwrap_unchecked;
/// A cell which can be written to only once. It is not thread safe.
///
/// Unlike [`std::cell::RefCell`], a `OnceCell` provides simple `&`
/// references to the contents.
///
/// [`std::cell::RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// let value: &String = cell.get_or_init(|| {
/// "Hello, World!".to_string()
/// });
/// assert_eq!(value, "Hello, World!");
/// assert!(cell.get().is_some());
/// ```
pub struct OnceCell<T> {
// Invariant: written to at most once.
inner: UnsafeCell<Option<T>>,
}
// Similarly to a `Sync` bound on `sync::OnceCell`, we can use
// `&unsync::OnceCell` to sneak a `T` through `catch_unwind`,
// by initializing the cell in closure and extracting the value in the
// `Drop`.
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}
impl<T> Default for OnceCell<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.get() {
Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
None => f.write_str("OnceCell(Uninit)"),
}
}
}
impl<T: Clone> Clone for OnceCell<T> {
fn clone(&self) -> OnceCell<T> {
match self.get() {
Some(value) => OnceCell::with_value(value.clone()),
None => OnceCell::new(),
}
}
fn clone_from(&mut self, source: &Self) {
match (self.get_mut(), source.get()) {
(Some(this), Some(source)) => this.clone_from(source),
_ => *self = source.clone(),
}
}
}
impl<T: PartialEq> PartialEq for OnceCell<T> {
fn eq(&self, other: &Self) -> bool {
self.get() == other.get()
}
}
impl<T: Eq> Eq for OnceCell<T> {}
impl<T> From<T> for OnceCell<T> {
fn from(value: T) -> Self {
OnceCell::with_value(value)
}
}
impl<T> OnceCell<T> {
/// Creates a new empty cell.
pub const fn new() -> OnceCell<T> {
OnceCell { inner: UnsafeCell::new(None) }
}
/// Creates a new initialized cell.
pub const fn with_value(value: T) -> OnceCell<T> {
OnceCell { inner: UnsafeCell::new(Some(value)) }
}
/// Gets a reference to the underlying value.
///
/// Returns `None` if the cell is empty.
#[inline]
pub fn get(&self) -> Option<&T> {
// Safe due to `inner`'s invariant
unsafe { &*self.inner.get() }.as_ref()
}
/// Gets a mutable reference to the underlying value.
///
/// Returns `None` if the cell is empty.
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// *cell.get_mut().unwrap() = 93;
/// assert_eq!(cell.get(), Some(&93));
/// ```
#[inline]
pub fn get_mut(&mut self) -> Option<&mut T> {
// Safe because we have unique access
unsafe { &mut *self.inner.get() }.as_mut()
}
/// Sets the contents of this cell to `value`.
///
/// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
/// full.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// assert_eq!(cell.set(92), Ok(()));
/// assert_eq!(cell.set(62), Err(62));
///
/// assert!(cell.get().is_some());
/// ```
pub fn set(&self, value: T) -> Result<(), T> {
match self.try_insert(value) {
Ok(_) => Ok(()),
Err((_, value)) => Err(value),
}
}
/// Like [`set`](Self::set), but also returns a reference to the final cell value.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// assert_eq!(cell.try_insert(92), Ok(&92));
/// assert_eq!(cell.try_insert(62), Err((&92, 62)));
///
/// assert!(cell.get().is_some());
/// ```
pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> {
if let Some(old) = self.get() {
return Err((old, value));
}
let slot = unsafe { &mut *self.inner.get() };
// This is the only place where we set the slot, no races
// due to reentrancy/concurrency are possible, and we've
// checked that slot is currently `None`, so this write
// maintains the `inner`'s invariant.
*slot = Some(value);
Ok(unsafe { unwrap_unchecked(slot.as_ref()) })
}
/// Gets the contents of the cell, initializing it with `f`
/// if the cell was empty.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and the cell
/// remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`. Doing
/// so results in a panic.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// let value = cell.get_or_init(|| 92);
/// assert_eq!(value, &92);
/// let value = cell.get_or_init(|| unreachable!());
/// assert_eq!(value, &92);
/// ```
pub fn get_or_init<F>(&self, f: F) -> &T
where
F: FnOnce() -> T,
{
enum Void {}
match self.get_or_try_init(|| Ok::<T, Void>(f())) {
Ok(val) => val,
Err(void) => match void {},
}
}
/// Gets the contents of the cell, initializing it with `f` if
/// the cell was empty. If the cell was empty and `f` failed, an
/// error is returned.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and the cell
/// remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`. Doing
/// so results in a panic.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
/// assert!(cell.get().is_none());
/// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
/// Ok(92)
/// });
/// assert_eq!(value, Ok(&92));
/// assert_eq!(cell.get(), Some(&92))
/// ```
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
where
F: FnOnce() -> Result<T, E>,
{
if let Some(val) = self.get() {
return Ok(val);
}
let val = f()?;
// Note that *some* forms of reentrant initialization might lead to
// UB (see `reentrant_init` test). I believe that just removing this
// `assert`, while keeping `set/get` would be sound, but it seems
// better to panic, rather than to silently use an old value.
assert!(self.set(val).is_ok(), "reentrant init");
Ok(unsafe { unwrap_unchecked(self.get()) })
}
/// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
///
/// Has no effect and returns `None` if the `OnceCell` hasn't been initialized.
///
/// # Examples
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let mut cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.take(), None);
///
/// let mut cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.take(), Some("hello".to_string()));
/// assert_eq!(cell.get(), None);
/// ```
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// cell = OnceCell::new();
/// ```
pub fn take(&mut self) -> Option<T> {
mem::replace(self, Self::default()).into_inner()
}
/// Consumes the `OnceCell`, returning the wrapped value.
///
/// Returns `None` if the cell was empty.
///
/// # Examples
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.into_inner(), None);
///
/// let cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.into_inner(), Some("hello".to_string()));
/// ```
pub fn into_inner(self) -> Option<T> {
// Because `into_inner` takes `self` by value, the compiler statically verifies
// that it is not currently borrowed. So it is safe to move out `Option<T>`.
self.inner.into_inner()
}
}
/// A value which is initialized on the first access.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let lazy: Lazy<i32> = Lazy::new(|| {
/// println!("initializing");
/// 92
/// });
/// println!("ready");
/// println!("{}", *lazy);
/// println!("{}", *lazy);
///
/// // Prints:
/// // ready
/// // initializing
/// // 92
/// // 92
/// ```
pub struct Lazy<T, F = fn() -> T> {
cell: OnceCell<T>,
init: Cell<Option<F>>,
}
impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {}
impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
}
}
impl<T, F> Lazy<T, F> {
/// Creates a new lazy value with the given initializing function.
///
/// # Example
/// ```
/// # fn main() {
/// use once_cell::unsync::Lazy;
///
/// let hello = "Hello, World!".to_string();
///
/// let lazy = Lazy::new(|| hello.to_uppercase());
///
/// assert_eq!(&*lazy, "HELLO, WORLD!");
/// # }
/// ```
pub const fn new(init: F) -> Lazy<T, F> {
Lazy { cell: OnceCell::new(), init: Cell::new(Some(init)) }
}
/// Consumes this `Lazy` returning the stored value.
///
/// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
pub fn into_value(this: Lazy<T, F>) -> Result<T, F> {
let cell = this.cell;
let init = this.init;
cell.into_inner().ok_or_else(|| {
init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned"))
})
}
}
impl<T, F: FnOnce() -> T> Lazy<T, F> {
/// Forces the evaluation of this lazy value and returns a reference to
/// the result.
///
/// This is equivalent to the `Deref` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force(&lazy), &92);
/// assert_eq!(&*lazy, &92);
/// ```
pub fn force(this: &Lazy<T, F>) -> &T {
this.cell.get_or_init(|| match this.init.take() {
Some(f) => f(),
None => panic!("Lazy instance has previously been poisoned"),
})
}
/// Forces the evaluation of this lazy value and returns a mutable reference to
/// the result.
///
/// This is equivalent to the `DerefMut` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force_mut(&mut lazy), &92);
/// assert_eq!(*lazy, 92);
/// ```
pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T {
Self::force(this);
Self::get_mut(this).unwrap_or_else(|| unreachable!())
}
/// Gets the reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get(&lazy), None);
/// assert_eq!(&*lazy, &92);
/// assert_eq!(Lazy::get(&lazy), Some(&92));
/// ```
pub fn get(this: &Lazy<T, F>) -> Option<&T> {
this.cell.get()
}
/// Gets the mutable reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get_mut(&mut lazy), None);
/// assert_eq!(*lazy, 92);
/// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92));
/// ```
pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> {
this.cell.get_mut()
}
}
impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
type Target = T;
fn deref(&self) -> &T {
Lazy::force(self)
}
}
impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> {
fn deref_mut(&mut self) -> &mut T {
Lazy::force(self);
self.cell.get_mut().unwrap_or_else(|| unreachable!())
}
}
impl<T: Default> Default for Lazy<T> {
/// Creates a new lazy value using `Default` as the initializing function.
fn default() -> Lazy<T> {
Lazy::new(T::default)
}
}
}
/// Thread-safe, blocking version of `OnceCell`.
#[cfg(any(feature = "std", feature = "critical-section"))]
pub mod sync {
use core::{
cell::Cell,
fmt, mem,
ops::{Deref, DerefMut},
panic::RefUnwindSafe,
};
use super::{imp::OnceCell as Imp, unwrap_unchecked};
/// A thread-safe cell which can be written to only once.
///
/// `OnceCell` provides `&` references to the contents without RAII guards.
///
/// Reading a non-`None` value out of `OnceCell` establishes a
/// happens-before relationship with a corresponding write. For example, if
/// thread A initializes the cell with `get_or_init(f)`, and thread B
/// subsequently reads the result of this call, B also observes all the side
/// effects of `f`.
///
/// # Example
/// ```
/// use once_cell::sync::OnceCell;
///
/// static CELL: OnceCell<String> = OnceCell::new();
/// assert!(CELL.get().is_none());
///
/// std::thread::spawn(|| {
/// let value: &String = CELL.get_or_init(|| {
/// "Hello, World!".to_string()
/// });
/// assert_eq!(value, "Hello, World!");
/// }).join().unwrap();
///
/// let value: Option<&String> = CELL.get();
/// assert!(value.is_some());
/// assert_eq!(value.unwrap().as_str(), "Hello, World!");
/// ```
pub struct OnceCell<T>(Imp<T>);
impl<T> Default for OnceCell<T> {
fn default() -> OnceCell<T> {
OnceCell::new()
}
}
impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.get() {
Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
None => f.write_str("OnceCell(Uninit)"),
}
}
}
impl<T: Clone> Clone for OnceCell<T> {
fn clone(&self) -> OnceCell<T> {
match self.get() {
Some(value) => Self::with_value(value.clone()),
None => Self::new(),
}
}
fn clone_from(&mut self, source: &Self) {
match (self.get_mut(), source.get()) {
(Some(this), Some(source)) => this.clone_from(source),
_ => *self = source.clone(),
}
}
}
impl<T> From<T> for OnceCell<T> {
fn from(value: T) -> Self {
Self::with_value(value)
}
}
impl<T: PartialEq> PartialEq for OnceCell<T> {
fn eq(&self, other: &OnceCell<T>) -> bool {
self.get() == other.get()
}
}
impl<T: Eq> Eq for OnceCell<T> {}
impl<T> OnceCell<T> {
/// Creates a new empty cell.
pub const fn new() -> OnceCell<T> {
OnceCell(Imp::new())
}
/// Creates a new initialized cell.
pub const fn with_value(value: T) -> OnceCell<T> {
OnceCell(Imp::with_value(value))
}
/// Gets the reference to the underlying value.
///
/// Returns `None` if the cell is empty, or being initialized. This
/// method never blocks.
pub fn get(&self) -> Option<&T> {
if self.0.is_initialized() {
// Safe b/c value is initialized.
Some(unsafe { self.get_unchecked() })
} else {
None
}
}
/// Gets the reference to the underlying value, blocking the current
/// thread until it is set.
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell = std::sync::Arc::new(OnceCell::new());
/// let t = std::thread::spawn({
/// let cell = std::sync::Arc::clone(&cell);
/// move || cell.set(92).unwrap()
/// });
///
/// // Returns immediately, but might return None.
/// let _value_or_none = cell.get();
///
/// // Will return 92, but might block until the other thread does `.set`.
/// let value: &u32 = cell.wait();
/// assert_eq!(*value, 92);
/// t.join().unwrap();
/// ```
#[cfg(feature = "std")]
pub fn wait(&self) -> &T {
if !self.0.is_initialized() {
self.0.wait()
}
debug_assert!(self.0.is_initialized());
// Safe b/c of the wait call above and the fact that we didn't
// relinquish our borrow.
unsafe { self.get_unchecked() }
}
/// Gets the mutable reference to the underlying value.
///
/// Returns `None` if the cell is empty.
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// cell = OnceCell::new();
/// ```
#[inline]
pub fn get_mut(&mut self) -> Option<&mut T> {
self.0.get_mut()
}
/// Get the reference to the underlying value, without checking if the
/// cell is initialized.
///
/// # Safety
///
/// Caller must ensure that the cell is in initialized state, and that
/// the contents are acquired by (synchronized to) this thread.
#[inline]
pub unsafe fn get_unchecked(&self) -> &T {
self.0.get_unchecked()
}
/// Sets the contents of this cell to `value`.
///
/// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
/// full.
///
/// # Example
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// static CELL: OnceCell<i32> = OnceCell::new();
///
/// fn main() {
/// assert!(CELL.get().is_none());
///
/// std::thread::spawn(|| {
/// assert_eq!(CELL.set(92), Ok(()));
/// }).join().unwrap();
///
/// assert_eq!(CELL.set(62), Err(62));
/// assert_eq!(CELL.get(), Some(&92));
/// }
/// ```
pub fn set(&self, value: T) -> Result<(), T> {
match self.try_insert(value) {
Ok(_) => Ok(()),
Err((_, value)) => Err(value),
}
}
/// Like [`set`](Self::set), but also returns a reference to the final cell value.
///
/// # Example
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// assert_eq!(cell.try_insert(92), Ok(&92));
/// assert_eq!(cell.try_insert(62), Err((&92, 62)));
///
/// assert!(cell.get().is_some());
/// ```
pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> {
let mut value = Some(value);
let res = self.get_or_init(|| unsafe { unwrap_unchecked(value.take()) });
match value {
None => Ok(res),
Some(value) => Err((res, value)),
}
}
/// Gets the contents of the cell, initializing it with `f` if the cell
/// was empty.
///
/// Many threads may call `get_or_init` concurrently with different
/// initializing functions, but it is guaranteed that only one function
/// will be executed.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and the cell
/// remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`. The
/// exact outcome is unspecified. Current implementation deadlocks, but
/// this may be changed to a panic in the future.
///
/// # Example
/// ```
/// use once_cell::sync::OnceCell;
///
/// let cell = OnceCell::new();
/// let value = cell.get_or_init(|| 92);
/// assert_eq!(value, &92);
/// let value = cell.get_or_init(|| unreachable!());
/// assert_eq!(value, &92);
/// ```
pub fn get_or_init<F>(&self, f: F) -> &T
where
F: FnOnce() -> T,
{
enum Void {}
match self.get_or_try_init(|| Ok::<T, Void>(f())) {
Ok(val) => val,
Err(void) => match void {},
}
}
/// Gets the contents of the cell, initializing it with `f` if
/// the cell was empty. If the cell was empty and `f` failed, an
/// error is returned.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and
/// the cell remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`.
/// The exact outcome is unspecified. Current implementation
/// deadlocks, but this may be changed to a panic in the future.
///
/// # Example
/// ```
/// use once_cell::sync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
/// assert!(cell.get().is_none());
/// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
/// Ok(92)
/// });
/// assert_eq!(value, Ok(&92));
/// assert_eq!(cell.get(), Some(&92))
/// ```
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
where
F: FnOnce() -> Result<T, E>,
{
// Fast path check
if let Some(value) = self.get() {
return Ok(value);
}
self.0.initialize(f)?;
// Safe b/c value is initialized.
debug_assert!(self.0.is_initialized());
Ok(unsafe { self.get_unchecked() })
}
/// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
///
/// Has no effect and returns `None` if the `OnceCell` hasn't been initialized.
///
/// # Examples
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.take(), None);
///
/// let mut cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.take(), Some("hello".to_string()));
/// assert_eq!(cell.get(), None);
/// ```
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// cell = OnceCell::new();
/// ```
pub fn take(&mut self) -> Option<T> {
mem::replace(self, Self::default()).into_inner()
}
/// Consumes the `OnceCell`, returning the wrapped value. Returns
/// `None` if the cell was empty.
///
/// # Examples
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.into_inner(), None);
///
/// let cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.into_inner(), Some("hello".to_string()));
/// ```
#[inline]
pub fn into_inner(self) -> Option<T> {
self.0.into_inner()
}
}
/// A value which is initialized on the first access.
///
/// This type is thread-safe and can be used in statics.
///
/// # Example
///
/// ```
/// use std::collections::HashMap;
///
/// use once_cell::sync::Lazy;
///
/// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| {
/// println!("initializing");
/// let mut m = HashMap::new();
/// m.insert(13, "Spica".to_string());
/// m.insert(74, "Hoyten".to_string());
/// m
/// });
///
/// fn main() {
/// println!("ready");
/// std::thread::spawn(|| {
/// println!("{:?}", HASHMAP.get(&13));
/// }).join().unwrap();
/// println!("{:?}", HASHMAP.get(&74));
///
/// // Prints:
/// // ready
/// // initializing
/// // Some("Spica")
/// // Some("Hoyten")
/// }
/// ```
pub struct Lazy<T, F = fn() -> T> {
cell: OnceCell<T>,
init: Cell<Option<F>>,
}
impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
}
}
// We never create a `&F` from a `&Lazy<T, F>` so it is fine to not impl
// `Sync` for `F`. We do create a `&mut Option<F>` in `force`, but this is
// properly synchronized, so it only happens once so it also does not
// contribute to this impl.
unsafe impl<T, F: Send> Sync for Lazy<T, F> where OnceCell<T>: Sync {}
// auto-derived `Send` impl is OK.
impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {}
impl<T, F> Lazy<T, F> {
/// Creates a new lazy value with the given initializing
/// function.
pub const fn new(f: F) -> Lazy<T, F> {
Lazy { cell: OnceCell::new(), init: Cell::new(Some(f)) }
}
/// Consumes this `Lazy` returning the stored value.
///
/// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
pub fn into_value(this: Lazy<T, F>) -> Result<T, F> {
let cell = this.cell;
let init = this.init;
cell.into_inner().ok_or_else(|| {
init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned"))
})
}
}
impl<T, F: FnOnce() -> T> Lazy<T, F> {
/// Forces the evaluation of this lazy value and
/// returns a reference to the result. This is equivalent
/// to the `Deref` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force(&lazy), &92);
/// assert_eq!(&*lazy, &92);
/// ```
pub fn force(this: &Lazy<T, F>) -> &T {
this.cell.get_or_init(|| match this.init.take() {
Some(f) => f(),
None => panic!("Lazy instance has previously been poisoned"),
})
}
/// Forces the evaluation of this lazy value and
/// returns a mutable reference to the result. This is equivalent
/// to the `Deref` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force_mut(&mut lazy), &mut 92);
/// ```
pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T {
Self::force(this);
Self::get_mut(this).unwrap_or_else(|| unreachable!())
}
/// Gets the reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get(&lazy), None);
/// assert_eq!(&*lazy, &92);
/// assert_eq!(Lazy::get(&lazy), Some(&92));
/// ```
pub fn get(this: &Lazy<T, F>) -> Option<&T> {
this.cell.get()
}
/// Gets the reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get_mut(&mut lazy), None);
/// assert_eq!(&*lazy, &92);
/// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92));
/// ```
pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> {
this.cell.get_mut()
}
}
impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
type Target = T;
fn deref(&self) -> &T {
Lazy::force(self)
}
}
impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> {
fn deref_mut(&mut self) -> &mut T {
Lazy::force(self);
self.cell.get_mut().unwrap_or_else(|| unreachable!())
}
}
impl<T: Default> Default for Lazy<T> {
/// Creates a new lazy value using `Default` as the initializing function.
fn default() -> Lazy<T> {
Lazy::new(T::default)
}
}
/// ```compile_fail
/// struct S(*mut ());
/// unsafe impl Sync for S {}
///
/// fn share<T: Sync>(_: &T) {}
/// share(&once_cell::sync::OnceCell::<S>::new());
/// ```
///
/// ```compile_fail
/// struct S(*mut ());
/// unsafe impl Sync for S {}
///
/// fn share<T: Sync>(_: &T) {}
/// share(&once_cell::sync::Lazy::<S>::new(|| unimplemented!()));
/// ```
fn _dummy() {}
}
#[cfg(feature = "race")]
pub mod race;
// Remove once MSRV is at least 1.58.
#[inline]
unsafe fn unwrap_unchecked<T>(val: Option<T>) -> T {
match val {
Some(value) => value,
None => {
debug_assert!(false);
core::hint::unreachable_unchecked()
}
}
}