1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
// This file is part of Substrate.

// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Implementation of a "bags list": a semi-sorted list where ordering granularity is dictated by
//! configurable thresholds that delineate the boundaries of bags. It uses a pattern of composite
//! data structures, where multiple storage items are masked by one outer API. See
//! [`crate::ListNodes`], [`crate::ListBags`] for more information.
//!
//! The outer API of this module is the [`List`] struct. It wraps all acceptable operations on top
//! of the aggregate linked list. All operations with the bags list should happen through this
//! interface.

use crate::Config;
use codec::{Decode, Encode, MaxEncodedLen};
use frame_election_provider_support::ScoreProvider;
use frame_support::{
	defensive, ensure,
	traits::{Defensive, DefensiveOption, Get},
	DefaultNoBound, PalletError,
};
use scale_info::TypeInfo;
use sp_runtime::traits::{Bounded, Zero};
use sp_std::{
	boxed::Box,
	collections::{btree_map::BTreeMap, btree_set::BTreeSet},
	iter,
	marker::PhantomData,
	prelude::*,
};

#[derive(Debug, PartialEq, Eq, Encode, Decode, MaxEncodedLen, TypeInfo, PalletError)]
pub enum ListError {
	/// A duplicate id has been detected.
	Duplicate,
	/// An Id does not have a greater score than another Id.
	NotHeavier,
	/// Attempted to place node in front of a node in another bag.
	NotInSameBag,
	/// Given node id was not found.
	NodeNotFound,
}

#[cfg(test)]
mod tests;

/// Given a certain score, to which bag does it belong to?
///
/// Bags are identified by their upper threshold; the value returned by this function is guaranteed
/// to be a member of `T::BagThresholds`.
///
/// Note that even if the thresholds list does not have `T::Score::max_value()` as its final member,
/// this function behaves as if it does.
pub fn notional_bag_for<T: Config<I>, I: 'static>(score: T::Score) -> T::Score {
	let thresholds = T::BagThresholds::get();
	let idx = thresholds.partition_point(|&threshold| score > threshold);
	thresholds.get(idx).copied().unwrap_or_else(T::Score::max_value)
}

/// The **ONLY** entry point of this module. All operations to the bags-list should happen through
/// this interface. It is forbidden to access other module members directly.
//
// Data structure providing efficient mostly-accurate selection of the top N id by `Score`.
//
// It's implemented as a set of linked lists. Each linked list comprises a bag of ids of
// arbitrary and unbounded length, all having a score within a particular constant range.
// This structure means that ids can be added and removed in `O(1)` time.
//
// Iteration is accomplished by chaining the iteration of each bag, from greatest to least. While
// the users within any particular bag are sorted in an entirely arbitrary order, the overall score
// decreases as successive bags are reached. This means that it is valid to truncate
// iteration at any desired point; only those ids in the lowest bag can be excluded. This
// satisfies both the desire for fairness and the requirement for efficiency.
pub struct List<T: Config<I>, I: 'static = ()>(PhantomData<(T, I)>);

impl<T: Config<I>, I: 'static> List<T, I> {
	/// Remove all data associated with the list from storage.
	///
	/// ## WARNING
	///
	/// this function should generally not be used in production as it could lead to a very large
	/// number of storage accesses.
	pub(crate) fn unsafe_clear() {
		#[allow(deprecated)]
		crate::ListBags::<T, I>::remove_all(None);
		#[allow(deprecated)]
		crate::ListNodes::<T, I>::remove_all();
	}

	/// Regenerate all of the data from the given ids.
	///
	/// WARNING: this is expensive and should only ever be performed when the list needs to be
	/// generated from scratch. Care needs to be taken to ensure
	///
	/// This may or may not need to be called at genesis as well, based on the configuration of the
	/// pallet using this `List`.
	///
	/// Returns the number of ids migrated.
	pub fn unsafe_regenerate(
		all: impl IntoIterator<Item = T::AccountId>,
		score_of: Box<dyn Fn(&T::AccountId) -> T::Score>,
	) -> u32 {
		// NOTE: This call is unsafe for the same reason as SortedListProvider::unsafe_regenerate.
		// I.e. because it can lead to many storage accesses.
		// So it is ok to call it as caller must ensure the conditions.
		Self::unsafe_clear();
		Self::insert_many(all, score_of)
	}

	/// Migrate the list from one set of thresholds to another.
	///
	/// This should only be called as part of an intentional migration; it's fairly expensive.
	///
	/// Returns the number of accounts affected.
	///
	/// Preconditions:
	///
	/// - `old_thresholds` is the previous list of thresholds.
	/// - All `bag_upper` currently in storage are members of `old_thresholds`.
	/// - `T::BagThresholds` has already been updated and is the new set of thresholds.
	///
	/// Postconditions:
	///
	/// - All `bag_upper` currently in storage are members of `T::BagThresholds`.
	/// - No id is changed unless required to by the difference between the old threshold list and
	///   the new.
	/// - ids whose bags change at all are implicitly rebagged into the appropriate bag in the new
	///   threshold set.
	#[allow(dead_code)]
	pub fn migrate(old_thresholds: &[T::Score]) -> u32 {
		let new_thresholds = T::BagThresholds::get();
		if new_thresholds == old_thresholds {
			return 0
		}

		// we can't check all preconditions, but we can check one
		debug_assert!(
			crate::ListBags::<T, I>::iter()
				.all(|(threshold, _)| old_thresholds.contains(&threshold)),
			"not all `bag_upper` currently in storage are members of `old_thresholds`",
		);
		debug_assert!(
			crate::ListNodes::<T, I>::iter()
				.all(|(_, node)| old_thresholds.contains(&node.bag_upper)),
			"not all `node.bag_upper` currently in storage are members of `old_thresholds`",
		);

		let old_set: BTreeSet<_> = old_thresholds.iter().copied().collect();
		let new_set: BTreeSet<_> = new_thresholds.iter().copied().collect();

		// accounts that need to be rebagged
		let mut affected_accounts = BTreeSet::new();
		// track affected old bags to make sure we only iterate them once
		let mut affected_old_bags = BTreeSet::new();

		let new_bags = new_set.difference(&old_set).copied();
		// a new bag means that all accounts previously using the old bag's threshold must now
		// be rebagged
		for inserted_bag in new_bags {
			let affected_bag = {
				// this recreates `notional_bag_for` logic, but with the old thresholds.
				let idx = old_thresholds.partition_point(|&threshold| inserted_bag > threshold);
				old_thresholds.get(idx).copied().unwrap_or_else(T::Score::max_value)
			};
			if !affected_old_bags.insert(affected_bag) {
				// If the previous threshold list was [10, 20], and we insert [3, 5], then there's
				// no point iterating through bag 10 twice.
				continue
			}

			if let Some(bag) = Bag::<T, I>::get(affected_bag) {
				affected_accounts.extend(bag.iter().map(|node| node.id));
			}
		}

		let removed_bags = old_set.difference(&new_set).copied();
		// a removed bag means that all members of that bag must be rebagged
		for removed_bag in removed_bags.clone() {
			if !affected_old_bags.insert(removed_bag) {
				continue
			}

			if let Some(bag) = Bag::<T, I>::get(removed_bag) {
				affected_accounts.extend(bag.iter().map(|node| node.id));
			}
		}

		// migrate the voters whose bag has changed
		let num_affected = affected_accounts.len() as u32;
		let score_of = T::ScoreProvider::score;
		let _removed = Self::remove_many(&affected_accounts);
		debug_assert_eq!(_removed, num_affected);
		let _inserted = Self::insert_many(affected_accounts.into_iter(), score_of);
		debug_assert_eq!(_inserted, num_affected);

		// we couldn't previously remove the old bags because both insertion and removal assume that
		// it's always safe to add a bag if it's not present. Now that that's sorted, we can get rid
		// of them.
		//
		// it's pretty cheap to iterate this again, because both sets are in-memory and require no
		// lookups.
		for removed_bag in removed_bags {
			debug_assert!(
				!crate::ListNodes::<T, I>::iter().any(|(_, node)| node.bag_upper == removed_bag),
				"no id should be present in a removed bag",
			);
			crate::ListBags::<T, I>::remove(removed_bag);
		}

		#[cfg(feature = "std")]
		debug_assert_eq!(Self::try_state(), Ok(()));

		num_affected
	}

	/// Returns `true` if the list contains `id`, otherwise returns `false`.
	pub(crate) fn contains(id: &T::AccountId) -> bool {
		crate::ListNodes::<T, I>::contains_key(id)
	}

	/// Get the score of the given node,
	pub fn get_score(id: &T::AccountId) -> Result<T::Score, ListError> {
		Node::<T, I>::get(id).map(|node| node.score()).ok_or(ListError::NodeNotFound)
	}

	/// Iterate over all nodes in all bags in the list.
	///
	/// Full iteration can be expensive; it's recommended to limit the number of items with
	/// `.take(n)`.
	pub(crate) fn iter() -> impl Iterator<Item = Node<T, I>> {
		// We need a touch of special handling here: because we permit `T::BagThresholds` to
		// omit the final bound, we need to ensure that we explicitly include that threshold in the
		// list.
		//
		// It's important to retain the ability to omit the final bound because it makes tests much
		// easier; they can just configure `type BagThresholds = ()`.
		let thresholds = T::BagThresholds::get();
		let iter = thresholds.iter().copied();
		let iter: Box<dyn Iterator<Item = T::Score>> = if thresholds.last() ==
			Some(&T::Score::max_value())
		{
			// in the event that they included it, we can just pass the iterator through unchanged.
			Box::new(iter.rev())
		} else {
			// otherwise, insert it here.
			Box::new(iter.chain(iter::once(T::Score::max_value())).rev())
		};

		iter.filter_map(Bag::get).flat_map(|bag| bag.iter())
	}

	/// Same as `iter`, but we start from a specific node.
	///
	/// All items after this node are returned, excluding `start` itself.
	pub(crate) fn iter_from(
		start: &T::AccountId,
	) -> Result<impl Iterator<Item = Node<T, I>>, ListError> {
		// We chain two iterators:
		// 1. from the given `start` till the end of the bag
		// 2. all the bags that come after `start`'s bag.

		let start_node = Node::<T, I>::get(start).ok_or(ListError::NodeNotFound)?;
		let start_node_upper = start_node.bag_upper;
		let start_bag = sp_std::iter::successors(start_node.next(), |prev| prev.next());

		let thresholds = T::BagThresholds::get();
		let idx = thresholds.partition_point(|&threshold| start_node_upper > threshold);
		let leftover_bags = thresholds
			.into_iter()
			.take(idx)
			.copied()
			.rev()
			.filter_map(Bag::get)
			.flat_map(|bag| bag.iter());

		Ok(start_bag.chain(leftover_bags))
	}

	/// Insert several ids into the appropriate bags in the list. Continues with insertions
	/// if duplicates are detected.
	///
	/// Returns the final count of number of ids inserted.
	fn insert_many(
		ids: impl IntoIterator<Item = T::AccountId>,
		score_of: impl Fn(&T::AccountId) -> T::Score,
	) -> u32 {
		let mut count = 0;
		ids.into_iter().for_each(|v| {
			let score = score_of(&v);
			if Self::insert(v, score).is_ok() {
				count += 1;
			}
		});

		count
	}

	/// Insert a new id into the appropriate bag in the list.
	///
	/// Returns an error if the list already contains `id`.
	pub(crate) fn insert(id: T::AccountId, score: T::Score) -> Result<(), ListError> {
		if Self::contains(&id) {
			return Err(ListError::Duplicate)
		}

		let bag_score = notional_bag_for::<T, I>(score);
		let mut bag = Bag::<T, I>::get_or_make(bag_score);
		// unchecked insertion is okay; we just got the correct `notional_bag_for`.
		bag.insert_unchecked(id.clone(), score);

		// new inserts are always the tail, so we must write the bag.
		bag.put();

		crate::log!(
			debug,
			"inserted {:?} with score {:?} into bag {:?}, new count is {}",
			id,
			score,
			bag_score,
			crate::ListNodes::<T, I>::count(),
		);

		Ok(())
	}

	/// Remove an id from the list, returning an error if `id` does not exists.
	pub(crate) fn remove(id: &T::AccountId) -> Result<(), ListError> {
		if !Self::contains(id) {
			return Err(ListError::NodeNotFound)
		}
		let _ = Self::remove_many(sp_std::iter::once(id));
		Ok(())
	}

	/// Remove many ids from the list.
	///
	/// This is more efficient than repeated calls to `Self::remove`.
	///
	/// Returns the final count of number of ids removed.
	fn remove_many<'a>(ids: impl IntoIterator<Item = &'a T::AccountId>) -> u32 {
		let mut bags = BTreeMap::new();
		let mut count = 0;

		for id in ids.into_iter() {
			let node = match Node::<T, I>::get(id) {
				Some(node) => node,
				None => continue,
			};
			count += 1;

			if !node.is_terminal() {
				// this node is not a head or a tail and thus the bag does not need to be updated
				node.excise()
			} else {
				// this node is a head or tail, so the bag needs to be updated
				let bag = bags
					.entry(node.bag_upper)
					.or_insert_with(|| Bag::<T, I>::get_or_make(node.bag_upper));
				// node.bag_upper must be correct, therefore this bag will contain this node.
				bag.remove_node_unchecked(&node);
			}

			// now get rid of the node itself
			node.remove_from_storage_unchecked()
		}

		for (_, bag) in bags {
			bag.put();
		}

		count
	}

	/// Update a node's position in the list.
	///
	/// If the node was in the correct bag, no effect. If the node was in the incorrect bag, they
	/// are moved into the correct bag.
	///
	/// Returns `Some((old_idx, new_idx))` if the node moved, otherwise `None`. In both cases, the
	/// node's score is written to the `score` field. Thus, this is not a noop, even if `None`.
	///
	/// This operation is somewhat more efficient than simply calling [`self.remove`] followed by
	/// [`self.insert`]. However, given large quantities of nodes to move, it may be more efficient
	/// to call [`self.remove_many`] followed by [`self.insert_many`].
	pub(crate) fn update_position_for(
		mut node: Node<T, I>,
		new_score: T::Score,
	) -> Option<(T::Score, T::Score)> {
		node.score = new_score;
		if node.is_misplaced(new_score) {
			let old_bag_upper = node.bag_upper;

			if !node.is_terminal() {
				// this node is not a head or a tail, so we can just cut it out of the list. update
				// and put the prev and next of this node, we do `node.put` inside `insert_note`.
				node.excise();
			} else if let Some(mut bag) = Bag::<T, I>::get(node.bag_upper) {
				// this is a head or tail, so the bag must be updated.
				bag.remove_node_unchecked(&node);
				bag.put();
			} else {
				frame_support::defensive!(
					"Node did not have a bag; BagsList is in an inconsistent state"
				);
			}

			// put the node into the appropriate new bag.
			let new_bag_upper = notional_bag_for::<T, I>(new_score);
			let mut bag = Bag::<T, I>::get_or_make(new_bag_upper);
			// prev, next, and bag_upper of the node are updated inside `insert_node`, also
			// `node.put` is in there.
			bag.insert_node_unchecked(node);
			bag.put();

			Some((old_bag_upper, new_bag_upper))
		} else {
			// just write the new score.
			node.put();
			None
		}
	}

	/// Put `heavier_id` to the position directly in front of `lighter_id`. Both ids must be in the
	/// same bag and the `score_of` `lighter_id` must be less than that of `heavier_id`.
	pub(crate) fn put_in_front_of(
		lighter_id: &T::AccountId,
		heavier_id: &T::AccountId,
	) -> Result<(), ListError> {
		let lighter_node = Node::<T, I>::get(&lighter_id).ok_or(ListError::NodeNotFound)?;
		let heavier_node = Node::<T, I>::get(&heavier_id).ok_or(ListError::NodeNotFound)?;

		ensure!(lighter_node.bag_upper == heavier_node.bag_upper, ListError::NotInSameBag);

		// this is the most expensive check, so we do it last.
		ensure!(
			T::ScoreProvider::score(&heavier_id) > T::ScoreProvider::score(&lighter_id),
			ListError::NotHeavier
		);

		// remove the heavier node from this list. Note that this removes the node from storage and
		// decrements the node counter.
		let _ =
			Self::remove(&heavier_id).defensive_proof("both nodes have been checked to exist; qed");

		// re-fetch `lighter_node` from storage since it may have been updated when `heavier_node`
		// was removed.
		let lighter_node =
			Node::<T, I>::get(lighter_id).defensive_ok_or_else(|| ListError::NodeNotFound)?;

		// insert `heavier_node` directly in front of `lighter_node`. This will update both nodes
		// in storage and update the node counter.
		Self::insert_at_unchecked(lighter_node, heavier_node);

		Ok(())
	}

	/// Insert `node` directly in front of `at`.
	///
	/// WARNINGS:
	/// - this is a naive function in that it does not check if `node` belongs to the same bag as
	/// `at`. It is expected that the call site will check preconditions.
	/// - this will panic if `at.bag_upper` is not a bag that already exists in storage.
	fn insert_at_unchecked(mut at: Node<T, I>, mut node: Node<T, I>) {
		// connect `node` to its new `prev`.
		node.prev = at.prev.clone();
		if let Some(mut prev) = at.prev() {
			prev.next = Some(node.id().clone());
			prev.put()
		}

		// connect `node` and `at`.
		node.next = Some(at.id().clone());
		at.prev = Some(node.id().clone());

		if node.is_terminal() {
			// `node` is the new head, so we make sure the bag is updated. Note,
			// since `node` is always in front of `at` we know that 1) there is always at least 2
			// nodes in the bag, and 2) only `node` could be the head and only `at` could be the
			// tail.
			let mut bag = Bag::<T, I>::get(at.bag_upper)
				.expect("given nodes must always have a valid bag. qed.");

			if node.prev == None {
				bag.head = Some(node.id().clone())
			}

			bag.put()
		};

		// write the updated nodes to storage.
		at.put();
		node.put();
	}

	/// Check the internal state of the list.
	///
	/// This should be called from the call-site, whenever one of the mutating apis (e.g. `insert`)
	/// is being used, after all other staking data (such as counter) has been updated. It checks:
	///
	/// * there are no duplicate ids,
	/// * length of this list is in sync with `ListNodes::count()`,
	/// * and sanity-checks all bags and nodes. This will cascade down all the checks and makes sure
	/// all bags and nodes are checked per *any* update to `List`.
	pub(crate) fn try_state() -> Result<(), &'static str> {
		let mut seen_in_list = BTreeSet::new();
		ensure!(
			Self::iter().map(|node| node.id).all(|id| seen_in_list.insert(id)),
			"duplicate identified",
		);

		let iter_count = Self::iter().count() as u32;
		let stored_count = crate::ListNodes::<T, I>::count();
		let nodes_count = crate::ListNodes::<T, I>::iter().count() as u32;
		ensure!(iter_count == stored_count, "iter_count != stored_count");
		ensure!(stored_count == nodes_count, "stored_count != nodes_count");

		crate::log!(trace, "count of nodes: {}", stored_count);

		let active_bags = {
			let thresholds = T::BagThresholds::get().iter().copied();
			let thresholds: Vec<T::Score> =
				if thresholds.clone().last() == Some(T::Score::max_value()) {
					// in the event that they included it, we don't need to make any changes
					thresholds.collect()
				} else {
					// otherwise, insert it here.
					thresholds.chain(iter::once(T::Score::max_value())).collect()
				};
			thresholds.into_iter().filter_map(|t| Bag::<T, I>::get(t))
		};

		let _ = active_bags.clone().try_for_each(|b| b.try_state())?;

		let nodes_in_bags_count =
			active_bags.clone().fold(0u32, |acc, cur| acc + cur.iter().count() as u32);
		ensure!(nodes_count == nodes_in_bags_count, "stored_count != nodes_in_bags_count");

		crate::log!(trace, "count of active bags {}", active_bags.count());

		// check that all nodes are sane. We check the `ListNodes` storage item directly in case we
		// have some "stale" nodes that are not in a bag.
		for (_id, node) in crate::ListNodes::<T, I>::iter() {
			node.try_state()?
		}

		Ok(())
	}

	/// Returns the nodes of all non-empty bags. For testing and benchmarks.
	#[cfg(any(feature = "std", feature = "runtime-benchmarks"))]
	#[allow(dead_code)]
	pub(crate) fn get_bags() -> Vec<(T::Score, Vec<T::AccountId>)> {
		use frame_support::traits::Get as _;

		let thresholds = T::BagThresholds::get();
		let iter = thresholds.iter().copied();
		let iter: Box<dyn Iterator<Item = T::Score>> = if thresholds.last() ==
			Some(&T::Score::max_value())
		{
			// in the event that they included it, we can just pass the iterator through unchanged.
			Box::new(iter)
		} else {
			// otherwise, insert it here.
			Box::new(iter.chain(sp_std::iter::once(T::Score::max_value())))
		};

		iter.filter_map(|t| {
			Bag::<T, I>::get(t)
				.map(|bag| (t, bag.iter().map(|n| n.id().clone()).collect::<Vec<_>>()))
		})
		.collect::<Vec<_>>()
	}
}

/// A Bag is a doubly-linked list of ids, where each id is mapped to a [`Node`].
///
/// Note that we maintain both head and tail pointers. While it would be possible to get away with
/// maintaining only a head pointer and cons-ing elements onto the front of the list, it's more
/// desirable to ensure that there is some element of first-come, first-serve to the list's
/// iteration so that there's no incentive to churn ids positioning to improve the chances of
/// appearing within the ids set.
#[derive(DefaultNoBound, Encode, Decode, MaxEncodedLen, TypeInfo)]
#[codec(mel_bound())]
#[scale_info(skip_type_params(T, I))]
#[cfg_attr(feature = "std", derive(frame_support::DebugNoBound, Clone, PartialEq))]
pub struct Bag<T: Config<I>, I: 'static = ()> {
	head: Option<T::AccountId>,
	tail: Option<T::AccountId>,

	#[codec(skip)]
	bag_upper: T::Score,
	#[codec(skip)]
	_phantom: PhantomData<I>,
}

impl<T: Config<I>, I: 'static> Bag<T, I> {
	#[cfg(test)]
	pub(crate) fn new(
		head: Option<T::AccountId>,
		tail: Option<T::AccountId>,
		bag_upper: T::Score,
	) -> Self {
		Self { head, tail, bag_upper, _phantom: PhantomData }
	}

	/// Get a bag by its upper score.
	pub(crate) fn get(bag_upper: T::Score) -> Option<Bag<T, I>> {
		crate::ListBags::<T, I>::try_get(bag_upper).ok().map(|mut bag| {
			bag.bag_upper = bag_upper;
			bag
		})
	}

	/// Get a bag by its upper score or make it, appropriately initialized. Does not check if
	/// if `bag_upper` is a valid threshold.
	fn get_or_make(bag_upper: T::Score) -> Bag<T, I> {
		Self::get(bag_upper).unwrap_or(Bag { bag_upper, ..Default::default() })
	}

	/// `True` if self is empty.
	fn is_empty(&self) -> bool {
		self.head.is_none() && self.tail.is_none()
	}

	/// Put the bag back into storage.
	fn put(self) {
		if self.is_empty() {
			crate::ListBags::<T, I>::remove(self.bag_upper);
		} else {
			crate::ListBags::<T, I>::insert(self.bag_upper, self);
		}
	}

	/// Get the head node in this bag.
	fn head(&self) -> Option<Node<T, I>> {
		self.head.as_ref().and_then(|id| Node::get(id))
	}

	/// Get the tail node in this bag.
	fn tail(&self) -> Option<Node<T, I>> {
		self.tail.as_ref().and_then(|id| Node::get(id))
	}

	/// Iterate over the nodes in this bag.
	pub(crate) fn iter(&self) -> impl Iterator<Item = Node<T, I>> {
		sp_std::iter::successors(self.head(), |prev| prev.next())
	}

	/// Insert a new id into this bag.
	///
	/// This is private on purpose because it's naive: it doesn't check whether this is the
	/// appropriate bag for this id at all. Generally, use [`List::insert`] instead.
	///
	/// Storage note: this modifies storage, but only for the nodes. You still need to call
	/// `self.put()` after use.
	fn insert_unchecked(&mut self, id: T::AccountId, score: T::Score) {
		// insert_node will overwrite `prev`, `next` and `bag_upper` to the proper values. As long
		// as this bag is the correct one, we're good. All calls to this must come after getting the
		// correct [`notional_bag_for`].
		self.insert_node_unchecked(Node::<T, I> {
			id,
			prev: None,
			next: None,
			bag_upper: Zero::zero(),
			score,
			_phantom: PhantomData,
		});
	}

	/// Insert a node into this bag.
	///
	/// This is private on purpose because it's naive; it doesn't check whether this is the
	/// appropriate bag for this node at all. Generally, use [`List::insert`] instead.
	///
	/// Storage note: this modifies storage, but only for the node. You still need to call
	/// `self.put()` after use.
	fn insert_node_unchecked(&mut self, mut node: Node<T, I>) {
		if let Some(tail) = &self.tail {
			if *tail == node.id {
				// this should never happen, but this check prevents one path to a worst case
				// infinite loop.
				defensive!("system logic error: inserting a node who has the id of tail");
				return
			};
		}

		// re-set the `bag_upper`. Regardless of whatever the node had previously, now it is going
		// to be `self.bag_upper`.
		node.bag_upper = self.bag_upper;

		let id = node.id.clone();
		// update this node now, treating it as the new tail.
		node.prev = self.tail.clone();
		node.next = None;
		node.put();

		// update the previous tail.
		if let Some(mut old_tail) = self.tail() {
			old_tail.next = Some(id.clone());
			old_tail.put();
		}
		self.tail = Some(id.clone());

		// ensure head exist. This is only set when the length of the bag is just 1, i.e. if this is
		// the first insertion into the bag. In this case, both head and tail should point to the
		// same node.
		if self.head.is_none() {
			self.head = Some(id);
			debug_assert!(self.iter().count() == 1);
		}
	}

	/// Remove a node from this bag.
	///
	/// This is private on purpose because it doesn't check whether this bag contains the node in
	/// the first place. Generally, use [`List::remove`] instead, similar to `insert_unchecked`.
	///
	/// Storage note: this modifies storage, but only for adjacent nodes. You still need to call
	/// `self.put()` and `ListNodes::remove(id)` to update storage for the bag and `node`.
	fn remove_node_unchecked(&mut self, node: &Node<T, I>) {
		// reassign neighboring nodes.
		node.excise();

		// clear the bag head/tail pointers as necessary.
		if self.tail.as_ref() == Some(&node.id) {
			self.tail = node.prev.clone();
		}
		if self.head.as_ref() == Some(&node.id) {
			self.head = node.next.clone();
		}
	}

	/// Check the internal state of the bag.
	///
	/// Should be called by the call-site, after any mutating operation on a bag. The call site of
	/// this struct is always `List`.
	///
	/// * Ensures head has no prev.
	/// * Ensures tail has no next.
	/// * Ensures there are no loops, traversal from head to tail is correct.
	fn try_state(&self) -> Result<(), &'static str> {
		frame_support::ensure!(
			self.head()
				.map(|head| head.prev().is_none())
				// if there is no head, then there must not be a tail, meaning that the bag is
				// empty.
				.unwrap_or_else(|| self.tail.is_none()),
			"head has a prev"
		);

		frame_support::ensure!(
			self.tail()
				.map(|tail| tail.next().is_none())
				// if there is no tail, then there must not be a head, meaning that the bag is
				// empty.
				.unwrap_or_else(|| self.head.is_none()),
			"tail has a next"
		);

		let mut seen_in_bag = BTreeSet::new();
		frame_support::ensure!(
			self.iter()
				.map(|node| node.id)
				// each voter is only seen once, thus there is no cycle within a bag
				.all(|voter| seen_in_bag.insert(voter)),
			"duplicate found in bag"
		);

		Ok(())
	}

	/// Iterate over the nodes in this bag (public for tests).
	#[cfg(feature = "std")]
	#[allow(dead_code)]
	pub fn std_iter(&self) -> impl Iterator<Item = Node<T, I>> {
		sp_std::iter::successors(self.head(), |prev| prev.next())
	}

	/// Check if the bag contains a node with `id`.
	fn contains(&self, id: &T::AccountId) -> bool {
		self.iter().any(|n| n.id() == id)
	}
}

/// A Node is the fundamental element comprising the doubly-linked list described by `Bag`.
#[derive(Encode, Decode, MaxEncodedLen, TypeInfo)]
#[codec(mel_bound())]
#[scale_info(skip_type_params(T, I))]
#[cfg_attr(feature = "std", derive(frame_support::DebugNoBound, Clone, PartialEq))]
pub struct Node<T: Config<I>, I: 'static = ()> {
	pub(crate) id: T::AccountId,
	pub(crate) prev: Option<T::AccountId>,
	pub(crate) next: Option<T::AccountId>,
	pub(crate) bag_upper: T::Score,
	pub(crate) score: T::Score,
	#[codec(skip)]
	pub(crate) _phantom: PhantomData<I>,
}

impl<T: Config<I>, I: 'static> Node<T, I> {
	/// Get a node by id.
	pub fn get(id: &T::AccountId) -> Option<Node<T, I>> {
		crate::ListNodes::<T, I>::try_get(id).ok()
	}

	/// Put the node back into storage.
	fn put(self) {
		crate::ListNodes::<T, I>::insert(self.id.clone(), self);
	}

	/// Update neighboring nodes to point to reach other.
	///
	/// Only updates storage for adjacent nodes, but not `self`; so the user may need to call
	/// `self.put`.
	fn excise(&self) {
		// Update previous node.
		if let Some(mut prev) = self.prev() {
			prev.next = self.next.clone();
			prev.put();
		}
		// Update next self.
		if let Some(mut next) = self.next() {
			next.prev = self.prev.clone();
			next.put();
		}
	}

	/// This is a naive function that removes a node from the `ListNodes` storage item.
	///
	/// It is naive because it does not check if the node has first been removed from its bag.
	fn remove_from_storage_unchecked(&self) {
		crate::ListNodes::<T, I>::remove(&self.id)
	}

	/// Get the previous node in the bag.
	fn prev(&self) -> Option<Node<T, I>> {
		self.prev.as_ref().and_then(|id| Node::get(id))
	}

	/// Get the next node in the bag.
	fn next(&self) -> Option<Node<T, I>> {
		self.next.as_ref().and_then(|id| Node::get(id))
	}

	/// `true` when this voter is in the wrong bag.
	pub fn is_misplaced(&self, current_score: T::Score) -> bool {
		notional_bag_for::<T, I>(current_score) != self.bag_upper
	}

	/// `true` when this voter is a bag head or tail.
	fn is_terminal(&self) -> bool {
		self.prev.is_none() || self.next.is_none()
	}

	/// Get the underlying voter.
	pub(crate) fn id(&self) -> &T::AccountId {
		&self.id
	}

	/// Get the current vote weight of the node.
	pub(crate) fn score(&self) -> T::Score {
		self.score
	}

	/// Get the underlying voter (public fo tests).
	#[cfg(feature = "std")]
	#[allow(dead_code)]
	pub fn std_id(&self) -> &T::AccountId {
		&self.id
	}

	#[cfg(any(feature = "runtime-benchmarks", test))]
	pub fn set_score(&mut self, s: T::Score) {
		self.score = s
	}

	/// The bag this nodes belongs to (public for benchmarks).
	#[cfg(feature = "runtime-benchmarks")]
	#[allow(dead_code)]
	pub fn bag_upper(&self) -> T::Score {
		self.bag_upper
	}

	fn try_state(&self) -> Result<(), &'static str> {
		let expected_bag = Bag::<T, I>::get(self.bag_upper).ok_or("bag not found for node")?;

		let id = self.id();

		frame_support::ensure!(
			expected_bag.contains(id),
			"node does not exist in the expected bag"
		);

		let non_terminal_check = !self.is_terminal() &&
			expected_bag.head.as_ref() != Some(id) &&
			expected_bag.tail.as_ref() != Some(id);
		let terminal_check =
			expected_bag.head.as_ref() == Some(id) || expected_bag.tail.as_ref() == Some(id);
		frame_support::ensure!(
			non_terminal_check || terminal_check,
			"a terminal node is neither its bag head or tail"
		);

		Ok(())
	}
}