1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
// This file is part of Substrate.

// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Multi phase, offchain election provider pallet.
//!
//! Currently, this election-provider has two distinct phases (see [`Phase`]), **signed** and
//! **unsigned**.
//!
//! ## Phases
//!
//! The timeline of pallet is as follows. At each block,
//! [`frame_election_provider_support::ElectionDataProvider::next_election_prediction`] is used to
//! estimate the time remaining to the next call to
//! [`frame_election_provider_support::ElectionProvider::elect`]. Based on this, a phase is chosen.
//! The timeline is as follows.
//!
//! ```ignore
//!                                                                    elect()
//!                 +   <--T::SignedPhase-->  +  <--T::UnsignedPhase-->   +
//!   +-------------------------------------------------------------------+
//!    Phase::Off   +       Phase::Signed     +      Phase::Unsigned      +
//! ```
//!
//! Note that the unsigned phase starts [`pallet::Config::UnsignedPhase`] blocks before the
//! `next_election_prediction`, but only ends when a call to [`ElectionProvider::elect`] happens. If
//! no `elect` happens, the signed phase is extended.
//!
//! > Given this, it is rather important for the user of this pallet to ensure it always terminates
//! election via `elect` before requesting a new one.
//!
//! Each of the phases can be disabled by essentially setting their length to zero. If both phases
//! have length zero, then the pallet essentially runs only the fallback strategy, denoted by
//! [`Config::Fallback`].
//!
//! ### Signed Phase
//!
//! In the signed phase, solutions (of type [`RawSolution`]) are submitted and queued on chain. A
//! deposit is reserved, based on the size of the solution, for the cost of keeping this solution
//! on-chain for a number of blocks, and the potential weight of the solution upon being checked. A
//! maximum of `pallet::Config::SignedMaxSubmissions` solutions are stored. The queue is always
//! sorted based on score (worse to best).
//!
//! Upon arrival of a new solution:
//!
//! 1. If the queue is not full, it is stored in the appropriate sorted index.
//! 2. If the queue is full but the submitted solution is better than one of the queued ones, the
//!    worse solution is discarded, the bond of the outgoing solution is returned, and the new
//!    solution is stored in the correct index.
//! 3. If the queue is full and the solution is not an improvement compared to any of the queued
//!    ones, it is instantly rejected and no additional bond is reserved.
//!
//! A signed solution cannot be reversed, taken back, updated, or retracted. In other words, the
//! origin can not bail out in any way, if their solution is queued.
//!
//! Upon the end of the signed phase, the solutions are examined from best to worse (i.e. `pop()`ed
//! until drained). Each solution undergoes an expensive `Pallet::feasibility_check`, which ensures
//! the score claimed by this score was correct, and it is valid based on the election data (i.e.
//! votes and targets). At each step, if the current best solution passes the feasibility check,
//! it is considered to be the best one. The sender of the origin is rewarded, and the rest of the
//! queued solutions get their deposit back and are discarded, without being checked.
//!
//! The following example covers all of the cases at the end of the signed phase:
//!
//! ```ignore
//! Queue
//! +-------------------------------+
//! |Solution(score=20, valid=false)| +-->  Slashed
//! +-------------------------------+
//! |Solution(score=15, valid=true )| +-->  Rewarded, Saved
//! +-------------------------------+
//! |Solution(score=10, valid=true )| +-->  Discarded
//! +-------------------------------+
//! |Solution(score=05, valid=false)| +-->  Discarded
//! +-------------------------------+
//! |             None              |
//! +-------------------------------+
//! ```
//!
//! Note that both of the bottom solutions end up being discarded and get their deposit back,
//! despite one of them being *invalid*.
//!
//! ## Unsigned Phase
//!
//! The unsigned phase will always follow the signed phase, with the specified duration. In this
//! phase, only validator nodes can submit solutions. A validator node who has offchain workers
//! enabled will start to mine a solution in this phase and submits it back to the chain as an
//! unsigned transaction, thus the name _unsigned_ phase. This unsigned transaction can never be
//! valid if propagated, and it acts similar to an inherent.
//!
//! Validators will only submit solutions if the one that they have computed is sufficiently better
//! than the best queued one (see [`pallet::Config::BetterUnsignedThreshold`]) and will limit the
//! weight of the solution to [`MinerConfig::MaxWeight`].
//!
//! The unsigned phase can be made passive depending on how the previous signed phase went, by
//! setting the first inner value of [`Phase`] to `false`. For now, the signed phase is always
//! active.
//!
//! ### Fallback
//!
//! If we reach the end of both phases (i.e. call to [`ElectionProvider::elect`] happens) and no
//! good solution is queued, then the fallback strategy [`pallet::Config::Fallback`] is used to
//! determine what needs to be done. The on-chain election is slow, and contains no balancing or
//! reduction post-processing. [`NoFallback`] does nothing and enables [`Phase::Emergency`], which
//! is a more *fail-safe* approach.
//!
//! ### Emergency Phase
//!
//! If, for any of the below reasons:
//!
//! 1. No **signed** or **unsigned** solution submitted, and no successful [`Config::Fallback`] is
//!    provided
//! 2. Any other unforeseen internal error
//!
//! A call to `T::ElectionProvider::elect` is made, and `Ok(_)` cannot be returned, then the pallet
//! proceeds to the [`Phase::Emergency`]. During this phase, any solution can be submitted from
//! [`Config::ForceOrigin`], without any checking, via [`Pallet::set_emergency_election_result`]
//! transaction. Hence, `[`Config::ForceOrigin`]` should only be set to a trusted origin, such as
//! the council or root. Once submitted, the forced solution is kept in [`QueuedSolution`] until the
//! next call to `T::ElectionProvider::elect`, where it is returned and [`Phase`] goes back to
//! `Off`.
//!
//! This implies that the user of this pallet (i.e. a staking pallet) should re-try calling
//! `T::ElectionProvider::elect` in case of error, until `OK(_)` is returned.
//!
//! To generate an emergency solution, one must only provide one argument: [`Supports`]. This is
//! essentially a collection of elected winners for the election, and voters who support them. The
//! supports can be generated by any means. In the simplest case, it could be manual. For example,
//! in the case of massive network failure or misbehavior, [`Config::ForceOrigin`] might decide to
//! select only a small number of emergency winners (which would greatly restrict the next validator
//! set, if this pallet is used with `pallet-staking`). If the failure is for other technical
//! reasons, then a simple and safe way to generate supports is using the staking-miner binary
//! provided in the Polkadot repository. This binary has a subcommand named `emergency-solution`
//! which is capable of connecting to a live network, and generating appropriate `supports` using a
//! standard algorithm, and outputting the `supports` in hex format, ready for submission. Note that
//! while this binary lives in the Polkadot repository, this particular subcommand of it can work
//! against any substrate-based chain.
//!
//! See the `staking-miner` documentation in the Polkadot repository for more information.
//!
//! ## Feasible Solution (correct solution)
//!
//! All submissions must undergo a feasibility check. Signed solutions are checked one by one at the
//! end of the signed phase, and the unsigned solutions are checked on the spot. A feasible solution
//! is as follows:
//!
//! 0. **all** of the used indices must be correct.
//! 1. present *exactly* correct number of winners.
//! 2. any assignment is checked to match with [`RoundSnapshot::voters`].
//! 3. the claimed score is valid, based on the fixed point arithmetic accuracy.
//!
//! ## Accuracy
//!
//! The accuracy of the election is configured via [`SolutionAccuracyOf`] which is the accuracy that
//! the submitted solutions must adhere to.
//!
//! Note that the accuracy is of great importance. The offchain solution should be as small as
//! possible, reducing solutions size/weight.
//!
//! ## Error types
//!
//! This pallet provides a verbose error system to ease future debugging and debugging. The overall
//! hierarchy of errors is as follows:
//!
//! 1. [`pallet::Error`]: These are the errors that can be returned in the dispatchables of the
//!    pallet, either signed or unsigned. Since decomposition with nested enums is not possible
//!    here, they are prefixed with the logical sub-system to which they belong.
//! 2. [`ElectionError`]: These are the errors that can be generated while the pallet is doing
//!    something in automatic scenarios, such as `offchain_worker` or `on_initialize`. These errors
//!    are helpful for logging and are thus nested as:
//!    - [`ElectionError::Miner`]: wraps a [`unsigned::MinerError`].
//!    - [`ElectionError::Feasibility`]: wraps a [`FeasibilityError`].
//!    - [`ElectionError::Fallback`]: wraps a fallback error.
//!    - [`ElectionError::DataProvider`]: wraps a static str.
//!
//! Note that there could be an overlap between these sub-errors. For example, A
//! `SnapshotUnavailable` can happen in both miner and feasibility check phase.
//!
//! ## Future Plans
//!
//! **Emergency-phase recovery script**: This script should be taken out of staking-miner in
//! polkadot and ideally live in `substrate/utils/frame/elections`.
//!
//! **Challenge Phase**. We plan on adding a third phase to the pallet, called the challenge phase.
//! This is a phase in which no further solutions are processed, and the current best solution might
//! be challenged by anyone (signed or unsigned). The main plan here is to enforce the solution to
//! be PJR. Checking PJR on-chain is quite expensive, yet proving that a solution is **not** PJR is
//! rather cheap. If a queued solution is successfully proven bad:
//!
//! 1. We must surely slash whoever submitted that solution (might be a challenge for unsigned
//!    solutions).
//! 2. We will fallback to the emergency strategy (likely extending the current era).
//!
//! **Bailing out**. The functionality of bailing out of a queued solution is nice. A miner can
//! submit a solution as soon as they _think_ it is high probability feasible, and do the checks
//! afterwards, and remove their solution (for a small cost of probably just transaction fees, or a
//! portion of the bond).
//!
//! **Conditionally open unsigned phase**: Currently, the unsigned phase is always opened. This is
//! useful because an honest validator will run substrate OCW code, which should be good enough to
//! trump a mediocre or malicious signed submission (assuming in the absence of honest signed bots).
//! If there are signed submissions, they can be checked against an absolute measure (e.g. PJR),
//! then we can only open the unsigned phase in extreme conditions (i.e. "no good signed solution
//! received") to spare some work for the active validators.
//!
//! **Allow smaller solutions and build up**: For now we only allow solutions that are exactly
//! [`DesiredTargets`], no more, no less. Over time, we can change this to a [min, max] where any
//! solution within this range is acceptable, where bigger solutions are prioritized.
//!
//! **Score based on (byte) size**: We should always prioritize small solutions over bigger ones, if
//! there is a tie. Even more harsh should be to enforce the bound of the `reduce` algorithm.
//!
//! **Take into account the encode/decode weight in benchmarks.** Currently, we only take into
//! account the weight of encode/decode in the `submit_unsigned` given its priority. Nonetheless,
//! all operations on the solution and the snapshot are worthy of taking this into account.

#![cfg_attr(not(feature = "std"), no_std)]

use codec::{Decode, Encode};
use frame_election_provider_support::{
	ElectionDataProvider, ElectionProvider, InstantElectionProvider, NposSolution,
};
use frame_support::{
	ensure,
	traits::{Currency, Get, OnUnbalanced, ReservableCurrency},
	weights::{DispatchClass, Weight},
};
use frame_system::{ensure_none, offchain::SendTransactionTypes};
use scale_info::TypeInfo;
use sp_arithmetic::{
	traits::{Bounded, CheckedAdd, Zero},
	UpperOf,
};
use sp_npos_elections::{
	assignment_ratio_to_staked_normalized, ElectionScore, EvaluateSupport, Supports, VoteWeight,
};
use sp_runtime::{
	transaction_validity::{
		InvalidTransaction, TransactionPriority, TransactionSource, TransactionValidity,
		TransactionValidityError, ValidTransaction,
	},
	DispatchError, ModuleError, PerThing, Perbill, RuntimeDebug, SaturatedConversion,
};
use sp_std::prelude::*;

#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
#[cfg(test)]
mod mock;
#[macro_use]
pub mod helpers;

const LOG_TARGET: &str = "runtime::election-provider";

pub mod signed;
pub mod unsigned;
pub mod weights;
use unsigned::VoterOf;
pub use weights::WeightInfo;

pub use signed::{
	BalanceOf, NegativeImbalanceOf, PositiveImbalanceOf, SignedSubmission, SignedSubmissionOf,
	SignedSubmissions, SubmissionIndicesOf,
};
pub use unsigned::{Miner, MinerConfig};

/// The solution type used by this crate.
pub type SolutionOf<T> = <T as MinerConfig>::Solution;

/// The voter index. Derived from [`SolutionOf`].
pub type SolutionVoterIndexOf<T> = <SolutionOf<T> as NposSolution>::VoterIndex;
/// The target index. Derived from [`SolutionOf`].
pub type SolutionTargetIndexOf<T> = <SolutionOf<T> as NposSolution>::TargetIndex;
/// The accuracy of the election, when submitted from offchain. Derived from [`SolutionOf`].
pub type SolutionAccuracyOf<T> =
	<SolutionOf<<T as crate::Config>::MinerConfig> as NposSolution>::Accuracy;
/// The fallback election type.
pub type FallbackErrorOf<T> = <<T as crate::Config>::Fallback as ElectionProvider>::Error;

/// Configuration for the benchmarks of the pallet.
pub trait BenchmarkingConfig {
	/// Range of voters.
	const VOTERS: [u32; 2];
	/// Range of targets.
	const TARGETS: [u32; 2];
	/// Range of active voters.
	const ACTIVE_VOTERS: [u32; 2];
	/// Range of desired targets.
	const DESIRED_TARGETS: [u32; 2];
	/// Maximum number of voters expected. This is used only for memory-benchmarking of snapshot.
	const SNAPSHOT_MAXIMUM_VOTERS: u32;
	/// Maximum number of voters expected. This is used only for memory-benchmarking of miner.
	const MINER_MAXIMUM_VOTERS: u32;
	/// Maximum number of targets expected. This is used only for memory-benchmarking.
	const MAXIMUM_TARGETS: u32;
}

/// A fallback implementation that transitions the pallet to the emergency phase.
pub struct NoFallback<T>(sp_std::marker::PhantomData<T>);

impl<T: Config> ElectionProvider for NoFallback<T> {
	type AccountId = T::AccountId;
	type BlockNumber = T::BlockNumber;
	type DataProvider = T::DataProvider;
	type Error = &'static str;

	fn elect() -> Result<Supports<T::AccountId>, Self::Error> {
		// Do nothing, this will enable the emergency phase.
		Err("NoFallback.")
	}
}

impl<T: Config> InstantElectionProvider for NoFallback<T> {
	fn elect_with_bounds(_: usize, _: usize) -> Result<Supports<T::AccountId>, Self::Error> {
		Err("NoFallback.")
	}
}

/// Current phase of the pallet.
#[derive(PartialEq, Eq, Clone, Copy, Encode, Decode, Debug, TypeInfo)]
pub enum Phase<Bn> {
	/// Nothing, the election is not happening.
	Off,
	/// Signed phase is open.
	Signed,
	/// Unsigned phase. First element is whether it is active or not, second the starting block
	/// number.
	///
	/// We do not yet check whether the unsigned phase is active or passive. The intent is for the
	/// blockchain to be able to declare: "I believe that there exists an adequate signed
	/// solution," advising validators not to bother running the unsigned offchain worker.
	///
	/// As validator nodes are free to edit their OCW code, they could simply ignore this advisory
	/// and always compute their own solution. However, by default, when the unsigned phase is
	/// passive, the offchain workers will not bother running.
	Unsigned((bool, Bn)),
	/// The emergency phase. This is enabled upon a failing call to `T::ElectionProvider::elect`.
	/// After that, the only way to leave this phase is through a successful
	/// `T::ElectionProvider::elect`.
	Emergency,
}

impl<Bn> Default for Phase<Bn> {
	fn default() -> Self {
		Phase::Off
	}
}

impl<Bn: PartialEq + Eq> Phase<Bn> {
	/// Whether the phase is emergency or not.
	pub fn is_emergency(&self) -> bool {
		matches!(self, Phase::Emergency)
	}

	/// Whether the phase is signed or not.
	pub fn is_signed(&self) -> bool {
		matches!(self, Phase::Signed)
	}

	/// Whether the phase is unsigned or not.
	pub fn is_unsigned(&self) -> bool {
		matches!(self, Phase::Unsigned(_))
	}

	/// Whether the phase is unsigned and open or not, with specific start.
	pub fn is_unsigned_open_at(&self, at: Bn) -> bool {
		matches!(self, Phase::Unsigned((true, real)) if *real == at)
	}

	/// Whether the phase is unsigned and open or not.
	pub fn is_unsigned_open(&self) -> bool {
		matches!(self, Phase::Unsigned((true, _)))
	}

	/// Whether the phase is off or not.
	pub fn is_off(&self) -> bool {
		matches!(self, Phase::Off)
	}
}

/// The type of `Computation` that provided this election data.
#[derive(PartialEq, Eq, Clone, Copy, Encode, Decode, Debug, TypeInfo)]
pub enum ElectionCompute {
	/// Election was computed on-chain.
	OnChain,
	/// Election was computed with a signed submission.
	Signed,
	/// Election was computed with an unsigned submission.
	Unsigned,
	/// Election was computed using the fallback
	Fallback,
	/// Election was computed with emergency status.
	Emergency,
}

impl Default for ElectionCompute {
	fn default() -> Self {
		ElectionCompute::OnChain
	}
}

/// A raw, unchecked solution.
///
/// This is what will get submitted to the chain.
///
/// Such a solution should never become effective in anyway before being checked by the
/// `Pallet::feasibility_check`.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, PartialOrd, Ord, TypeInfo)]
pub struct RawSolution<S> {
	/// the solution itself.
	pub solution: S,
	/// The _claimed_ score of the solution.
	pub score: ElectionScore,
	/// The round at which this solution should be submitted.
	pub round: u32,
}

impl<C: Default> Default for RawSolution<C> {
	fn default() -> Self {
		// Round 0 is always invalid, only set this to 1.
		Self { round: 1, solution: Default::default(), score: Default::default() }
	}
}

/// A checked solution, ready to be enacted.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, Default, TypeInfo)]
pub struct ReadySolution<A> {
	/// The final supports of the solution.
	///
	/// This is target-major vector, storing each winners, total backing, and each individual
	/// backer.
	pub supports: Supports<A>,
	/// The score of the solution.
	///
	/// This is needed to potentially challenge the solution.
	pub score: ElectionScore,
	/// How this election was computed.
	pub compute: ElectionCompute,
}

/// A snapshot of all the data that is needed for en entire round. They are provided by
/// [`ElectionDataProvider`] and are kept around until the round is finished.
///
/// These are stored together because they are often accessed together.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, Default, TypeInfo)]
#[codec(mel_bound())]
#[scale_info(skip_type_params(T))]
pub struct RoundSnapshot<T: Config> {
	/// All of the voters.
	pub voters: Vec<VoterOf<T>>,
	/// All of the targets.
	pub targets: Vec<T::AccountId>,
}

/// Encodes the length of a solution or a snapshot.
///
/// This is stored automatically on-chain, and it contains the **size of the entire snapshot**.
/// This is also used in dispatchables as weight witness data and should **only contain the size of
/// the presented solution**, not the entire snapshot.
#[derive(PartialEq, Eq, Clone, Copy, Encode, Decode, Debug, Default, TypeInfo)]
pub struct SolutionOrSnapshotSize {
	/// The length of voters.
	#[codec(compact)]
	pub voters: u32,
	/// The length of targets.
	#[codec(compact)]
	pub targets: u32,
}

/// Internal errors of the pallet.
///
/// Note that this is different from [`pallet::Error`].
#[derive(frame_support::DebugNoBound)]
#[cfg_attr(feature = "runtime-benchmarks", derive(strum::IntoStaticStr))]
pub enum ElectionError<T: Config> {
	/// An error happened in the feasibility check sub-system.
	Feasibility(FeasibilityError),
	/// An error in the miner (offchain) sub-system.
	Miner(unsigned::MinerError),
	/// An error happened in the data provider.
	DataProvider(&'static str),
	/// An error nested in the fallback.
	Fallback(FallbackErrorOf<T>),
	/// No solution has been queued.
	NothingQueued,
}

// NOTE: we have to do this manually because of the additional where clause needed on
// `FallbackErrorOf<T>`.
#[cfg(test)]
impl<T: Config> PartialEq for ElectionError<T>
where
	FallbackErrorOf<T>: PartialEq,
{
	fn eq(&self, other: &Self) -> bool {
		use ElectionError::*;
		match (self, other) {
			(&Feasibility(ref x), &Feasibility(ref y)) if x == y => true,
			(&Miner(ref x), &Miner(ref y)) if x == y => true,
			(&DataProvider(ref x), &DataProvider(ref y)) if x == y => true,
			(&Fallback(ref x), &Fallback(ref y)) if x == y => true,
			_ => false,
		}
	}
}

impl<T: Config> From<FeasibilityError> for ElectionError<T> {
	fn from(e: FeasibilityError) -> Self {
		ElectionError::Feasibility(e)
	}
}

impl<T: Config> From<unsigned::MinerError> for ElectionError<T> {
	fn from(e: unsigned::MinerError) -> Self {
		ElectionError::Miner(e)
	}
}

/// Errors that can happen in the feasibility check.
#[derive(Debug, Eq, PartialEq)]
#[cfg_attr(feature = "runtime-benchmarks", derive(strum::IntoStaticStr))]
pub enum FeasibilityError {
	/// Wrong number of winners presented.
	WrongWinnerCount,
	/// The snapshot is not available.
	///
	/// Kinda defensive: The pallet should technically never attempt to do a feasibility check when
	/// no snapshot is present.
	SnapshotUnavailable,
	/// Internal error from the election crate.
	NposElection(sp_npos_elections::Error),
	/// A vote is invalid.
	InvalidVote,
	/// A voter is invalid.
	InvalidVoter,
	/// The given score was invalid.
	InvalidScore,
	/// The provided round is incorrect.
	InvalidRound,
	/// Comparison against `MinimumUntrustedScore` failed.
	UntrustedScoreTooLow,
}

impl From<sp_npos_elections::Error> for FeasibilityError {
	fn from(e: sp_npos_elections::Error) -> Self {
		FeasibilityError::NposElection(e)
	}
}

pub use pallet::*;
#[frame_support::pallet]
pub mod pallet {
	use super::*;
	use frame_election_provider_support::{InstantElectionProvider, NposSolver};
	use frame_support::{pallet_prelude::*, traits::EstimateCallFee};
	use frame_system::pallet_prelude::*;

	#[pallet::config]
	pub trait Config: frame_system::Config + SendTransactionTypes<Call<Self>> {
		type Event: From<Event<Self>>
			+ IsType<<Self as frame_system::Config>::Event>
			+ TryInto<Event<Self>>;

		/// Currency type.
		type Currency: ReservableCurrency<Self::AccountId> + Currency<Self::AccountId>;

		/// Something that can predict the fee of a call. Used to sensibly distribute rewards.
		type EstimateCallFee: EstimateCallFee<Call<Self>, BalanceOf<Self>>;

		/// Duration of the unsigned phase.
		#[pallet::constant]
		type UnsignedPhase: Get<Self::BlockNumber>;
		/// Duration of the signed phase.
		#[pallet::constant]
		type SignedPhase: Get<Self::BlockNumber>;

		/// The minimum amount of improvement to the solution score that defines a solution as
		/// "better" in the Signed phase.
		#[pallet::constant]
		type BetterSignedThreshold: Get<Perbill>;

		/// The minimum amount of improvement to the solution score that defines a solution as
		/// "better" in the Unsigned phase.
		#[pallet::constant]
		type BetterUnsignedThreshold: Get<Perbill>;

		/// The repeat threshold of the offchain worker.
		///
		/// For example, if it is 5, that means that at least 5 blocks will elapse between attempts
		/// to submit the worker's solution.
		#[pallet::constant]
		type OffchainRepeat: Get<Self::BlockNumber>;

		/// The priority of the unsigned transaction submitted in the unsigned-phase
		#[pallet::constant]
		type MinerTxPriority: Get<TransactionPriority>;

		/// Configurations of the embedded miner.
		///
		/// Any external software implementing this can use the [`unsigned::Miner`] type provided,
		/// which can mine new solutions and trim them accordingly.
		type MinerConfig: crate::unsigned::MinerConfig<
			AccountId = Self::AccountId,
			MaxVotesPerVoter = <Self::DataProvider as ElectionDataProvider>::MaxVotesPerVoter,
		>;

		/// Maximum number of signed submissions that can be queued.
		///
		/// It is best to avoid adjusting this during an election, as it impacts downstream data
		/// structures. In particular, `SignedSubmissionIndices<T>` is bounded on this value. If you
		/// update this value during an election, you _must_ ensure that
		/// `SignedSubmissionIndices.len()` is less than or equal to the new value. Otherwise,
		/// attempts to submit new solutions may cause a runtime panic.
		#[pallet::constant]
		type SignedMaxSubmissions: Get<u32>;

		/// Maximum weight of a signed solution.
		///
		/// If [`Config::MinerConfig`] is being implemented to submit signed solutions (outside of
		/// this pallet), then [`MinerConfig::solution_weight`] is used to compare against
		/// this value.
		#[pallet::constant]
		type SignedMaxWeight: Get<Weight>;

		/// The maximum amount of unchecked solutions to refund the call fee for.
		#[pallet::constant]
		type SignedMaxRefunds: Get<u32>;

		/// Base reward for a signed solution
		#[pallet::constant]
		type SignedRewardBase: Get<BalanceOf<Self>>;

		/// Base deposit for a signed solution.
		#[pallet::constant]
		type SignedDepositBase: Get<BalanceOf<Self>>;

		/// Per-byte deposit for a signed solution.
		#[pallet::constant]
		type SignedDepositByte: Get<BalanceOf<Self>>;

		/// Per-weight deposit for a signed solution.
		#[pallet::constant]
		type SignedDepositWeight: Get<BalanceOf<Self>>;

		/// The maximum number of electing voters to put in the snapshot. At the moment, snapshots
		/// are only over a single block, but once multi-block elections are introduced they will
		/// take place over multiple blocks.
		#[pallet::constant]
		type MaxElectingVoters: Get<SolutionVoterIndexOf<Self::MinerConfig>>;

		/// The maximum number of electable targets to put in the snapshot.
		#[pallet::constant]
		type MaxElectableTargets: Get<SolutionTargetIndexOf<Self::MinerConfig>>;

		/// Handler for the slashed deposits.
		type SlashHandler: OnUnbalanced<NegativeImbalanceOf<Self>>;

		/// Handler for the rewards.
		type RewardHandler: OnUnbalanced<PositiveImbalanceOf<Self>>;

		/// Something that will provide the election data.
		type DataProvider: ElectionDataProvider<
			AccountId = Self::AccountId,
			BlockNumber = Self::BlockNumber,
		>;

		/// Configuration for the fallback.
		type Fallback: InstantElectionProvider<
			AccountId = Self::AccountId,
			BlockNumber = Self::BlockNumber,
			DataProvider = Self::DataProvider,
		>;

		/// Configuration of the governance-only fallback.
		///
		/// As a side-note, it is recommend for test-nets to use `type ElectionProvider =
		/// BoundedExecution<_>` if the test-net is not expected to have thousands of nominators.
		type GovernanceFallback: InstantElectionProvider<
			AccountId = Self::AccountId,
			BlockNumber = Self::BlockNumber,
			DataProvider = Self::DataProvider,
		>;

		/// OCW election solution miner algorithm implementation.
		type Solver: NposSolver<AccountId = Self::AccountId>;

		/// Origin that can control this pallet. Note that any action taken by this origin (such)
		/// as providing an emergency solution is not checked. Thus, it must be a trusted origin.
		type ForceOrigin: EnsureOrigin<Self::Origin>;

		/// The configuration of benchmarking.
		type BenchmarkingConfig: BenchmarkingConfig;

		/// The weight of the pallet.
		type WeightInfo: WeightInfo;
	}

	#[pallet::hooks]
	impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
		fn on_initialize(now: T::BlockNumber) -> Weight {
			let next_election = T::DataProvider::next_election_prediction(now).max(now);

			let signed_deadline = T::SignedPhase::get() + T::UnsignedPhase::get();
			let unsigned_deadline = T::UnsignedPhase::get();

			let remaining = next_election - now;
			let current_phase = Self::current_phase();

			log!(
				trace,
				"current phase {:?}, next election {:?}, metadata: {:?}",
				current_phase,
				next_election,
				Self::snapshot_metadata()
			);
			match current_phase {
				Phase::Off if remaining <= signed_deadline && remaining > unsigned_deadline => {
					// NOTE: if signed-phase length is zero, second part of the if-condition fails.
					match Self::create_snapshot() {
						Ok(_) => {
							Self::on_initialize_open_signed();
							T::WeightInfo::on_initialize_open_signed()
						},
						Err(why) => {
							// Not much we can do about this at this point.
							log!(warn, "failed to open signed phase due to {:?}", why);
							T::WeightInfo::on_initialize_nothing()
						},
					}
				},
				Phase::Signed | Phase::Off
					if remaining <= unsigned_deadline && remaining > Zero::zero() =>
				{
					// our needs vary according to whether or not the unsigned phase follows a
					// signed phase
					let (need_snapshot, enabled) = if current_phase == Phase::Signed {
						// there was previously a signed phase: close the signed phase, no need for
						// snapshot.
						//
						// Notes:
						//
						//   - `Self::finalize_signed_phase()` also appears in `fn do_elect`. This
						//     is a guard against the case that `elect` is called prematurely. This
						//     adds a small amount of overhead, but that is unfortunately
						//     unavoidable.
						let _ = Self::finalize_signed_phase();
						// In the future we can consider disabling the unsigned phase if the signed
						// phase completes successfully, but for now we're enabling it
						// unconditionally as a defensive measure.
						(false, true)
					} else {
						// No signed phase: create a new snapshot, definitely `enable` the unsigned
						// phase.
						(true, true)
					};

					if need_snapshot {
						match Self::create_snapshot() {
							Ok(_) => {
								Self::on_initialize_open_unsigned(enabled, now);
								T::WeightInfo::on_initialize_open_unsigned()
							},
							Err(why) => {
								log!(warn, "failed to open unsigned phase due to {:?}", why);
								T::WeightInfo::on_initialize_nothing()
							},
						}
					} else {
						Self::on_initialize_open_unsigned(enabled, now);
						T::WeightInfo::on_initialize_open_unsigned()
					}
				},
				_ => T::WeightInfo::on_initialize_nothing(),
			}
		}

		fn offchain_worker(now: T::BlockNumber) {
			use sp_runtime::offchain::storage_lock::{BlockAndTime, StorageLock};

			// Create a lock with the maximum deadline of number of blocks in the unsigned phase.
			// This should only come useful in an **abrupt** termination of execution, otherwise the
			// guard will be dropped upon successful execution.
			let mut lock =
				StorageLock::<BlockAndTime<frame_system::Pallet<T>>>::with_block_deadline(
					unsigned::OFFCHAIN_LOCK,
					T::UnsignedPhase::get().saturated_into(),
				);

			match lock.try_lock() {
				Ok(_guard) => {
					Self::do_synchronized_offchain_worker(now);
				},
				Err(deadline) => {
					log!(debug, "offchain worker lock not released, deadline is {:?}", deadline);
				},
			};
		}

		fn integrity_test() {
			use sp_std::mem::size_of;
			// The index type of both voters and targets need to be smaller than that of usize (very
			// unlikely to be the case, but anyhow)..
			assert!(size_of::<SolutionVoterIndexOf<T::MinerConfig>>() <= size_of::<usize>());
			assert!(size_of::<SolutionTargetIndexOf<T::MinerConfig>>() <= size_of::<usize>());

			// ----------------------------
			// Based on the requirements of [`sp_npos_elections::Assignment::try_normalize`].
			let max_vote: usize = <SolutionOf<T::MinerConfig> as NposSolution>::LIMIT;

			// 2. Maximum sum of [SolutionAccuracy; 16] must fit into `UpperOf<OffchainAccuracy>`.
			let maximum_chain_accuracy: Vec<UpperOf<SolutionAccuracyOf<T>>> = (0..max_vote)
				.map(|_| {
					<UpperOf<SolutionAccuracyOf<T>>>::from(
						<SolutionAccuracyOf<T>>::one().deconstruct(),
					)
				})
				.collect();
			let _: UpperOf<SolutionAccuracyOf<T>> = maximum_chain_accuracy
				.iter()
				.fold(Zero::zero(), |acc, x| acc.checked_add(x).unwrap());

			// We only accept data provider who's maximum votes per voter matches our
			// `T::Solution`'s `LIMIT`.
			//
			// NOTE that this pallet does not really need to enforce this in runtime. The
			// solution cannot represent any voters more than `LIMIT` anyhow.
			assert_eq!(
				<T::DataProvider as ElectionDataProvider>::MaxVotesPerVoter::get(),
				<SolutionOf<T::MinerConfig> as NposSolution>::LIMIT as u32,
			);

			// While it won't cause any failures, setting `SignedMaxRefunds` gt
			// `SignedMaxSubmissions` is a red flag that the developer does not understand how to
			// configure this pallet.
			assert!(T::SignedMaxSubmissions::get() >= T::SignedMaxRefunds::get());
		}
	}

	#[pallet::call]
	impl<T: Config> Pallet<T> {
		/// Submit a solution for the unsigned phase.
		///
		/// The dispatch origin fo this call must be __none__.
		///
		/// This submission is checked on the fly. Moreover, this unsigned solution is only
		/// validated when submitted to the pool from the **local** node. Effectively, this means
		/// that only active validators can submit this transaction when authoring a block (similar
		/// to an inherent).
		///
		/// To prevent any incorrect solution (and thus wasted time/weight), this transaction will
		/// panic if the solution submitted by the validator is invalid in any way, effectively
		/// putting their authoring reward at risk.
		///
		/// No deposit or reward is associated with this submission.
		#[pallet::weight((
			T::WeightInfo::submit_unsigned(
				witness.voters,
				witness.targets,
				raw_solution.solution.voter_count() as u32,
				raw_solution.solution.unique_targets().len() as u32
			),
			DispatchClass::Operational,
		))]
		pub fn submit_unsigned(
			origin: OriginFor<T>,
			raw_solution: Box<RawSolution<SolutionOf<T::MinerConfig>>>,
			witness: SolutionOrSnapshotSize,
		) -> DispatchResult {
			ensure_none(origin)?;
			let error_message = "Invalid unsigned submission must produce invalid block and \
				 deprive validator from their authoring reward.";

			// Check score being an improvement, phase, and desired targets.
			Self::unsigned_pre_dispatch_checks(&raw_solution).expect(error_message);

			// Ensure witness was correct.
			let SolutionOrSnapshotSize { voters, targets } =
				Self::snapshot_metadata().expect(error_message);

			// NOTE: we are asserting, not `ensure`ing -- we want to panic here.
			assert!(voters as u32 == witness.voters, "{}", error_message);
			assert!(targets as u32 == witness.targets, "{}", error_message);

			let ready = Self::feasibility_check(*raw_solution, ElectionCompute::Unsigned)
				.expect(error_message);

			// Store the newly received solution.
			log!(info, "queued unsigned solution with score {:?}", ready.score);
			let ejected_a_solution = <QueuedSolution<T>>::exists();
			<QueuedSolution<T>>::put(ready);
			Self::deposit_event(Event::SolutionStored {
				compute: ElectionCompute::Unsigned,
				prev_ejected: ejected_a_solution,
			});

			Ok(())
		}

		/// Set a new value for `MinimumUntrustedScore`.
		///
		/// Dispatch origin must be aligned with `T::ForceOrigin`.
		///
		/// This check can be turned off by setting the value to `None`.
		#[pallet::weight(T::DbWeight::get().writes(1))]
		pub fn set_minimum_untrusted_score(
			origin: OriginFor<T>,
			maybe_next_score: Option<ElectionScore>,
		) -> DispatchResult {
			T::ForceOrigin::ensure_origin(origin)?;
			<MinimumUntrustedScore<T>>::set(maybe_next_score);
			Ok(())
		}

		/// Set a solution in the queue, to be handed out to the client of this pallet in the next
		/// call to `ElectionProvider::elect`.
		///
		/// This can only be set by `T::ForceOrigin`, and only when the phase is `Emergency`.
		///
		/// The solution is not checked for any feasibility and is assumed to be trustworthy, as any
		/// feasibility check itself can in principle cause the election process to fail (due to
		/// memory/weight constrains).
		#[pallet::weight(T::DbWeight::get().reads_writes(1, 1))]
		pub fn set_emergency_election_result(
			origin: OriginFor<T>,
			supports: Supports<T::AccountId>,
		) -> DispatchResult {
			T::ForceOrigin::ensure_origin(origin)?;
			ensure!(Self::current_phase().is_emergency(), <Error<T>>::CallNotAllowed);

			// Note: we don't `rotate_round` at this point; the next call to
			// `ElectionProvider::elect` will succeed and take care of that.

			let solution = ReadySolution {
				supports,
				score: Default::default(),
				compute: ElectionCompute::Emergency,
			};

			Self::deposit_event(Event::SolutionStored {
				compute: ElectionCompute::Emergency,
				prev_ejected: QueuedSolution::<T>::exists(),
			});

			<QueuedSolution<T>>::put(solution);
			Ok(())
		}

		/// Submit a solution for the signed phase.
		///
		/// The dispatch origin fo this call must be __signed__.
		///
		/// The solution is potentially queued, based on the claimed score and processed at the end
		/// of the signed phase.
		///
		/// A deposit is reserved and recorded for the solution. Based on the outcome, the solution
		/// might be rewarded, slashed, or get all or a part of the deposit back.
		#[pallet::weight(T::WeightInfo::submit())]
		pub fn submit(
			origin: OriginFor<T>,
			raw_solution: Box<RawSolution<SolutionOf<T::MinerConfig>>>,
		) -> DispatchResult {
			let who = ensure_signed(origin)?;

			// ensure solution is timely.
			ensure!(Self::current_phase().is_signed(), Error::<T>::PreDispatchEarlySubmission);

			// NOTE: this is the only case where having separate snapshot would have been better
			// because could do just decode_len. But we can create abstractions to do this.

			// build size. Note: this is not needed for weight calc, thus not input.
			// unlikely to ever return an error: if phase is signed, snapshot will exist.
			let size = Self::snapshot_metadata().ok_or(Error::<T>::MissingSnapshotMetadata)?;

			ensure!(
				Self::solution_weight_of(&raw_solution, size) < T::SignedMaxWeight::get(),
				Error::<T>::SignedTooMuchWeight,
			);

			// create the submission
			let deposit = Self::deposit_for(&raw_solution, size);
			let call_fee = {
				let call = Call::submit { raw_solution: raw_solution.clone() };
				T::EstimateCallFee::estimate_call_fee(&call, None::<Weight>.into())
			};

			let submission = SignedSubmission {
				who: who.clone(),
				deposit,
				raw_solution: *raw_solution,
				call_fee,
			};

			// insert the submission if the queue has space or it's better than the weakest
			// eject the weakest if the queue was full
			let mut signed_submissions = Self::signed_submissions();
			let maybe_removed = match signed_submissions.insert(submission) {
				// it's an error if we failed to insert a submission: this indicates the queue was
				// full but our solution had insufficient score to eject any solution
				signed::InsertResult::NotInserted => return Err(Error::<T>::SignedQueueFull.into()),
				signed::InsertResult::Inserted => None,
				signed::InsertResult::InsertedEjecting(weakest) => Some(weakest),
			};

			// collect deposit. Thereafter, the function cannot fail.
			T::Currency::reserve(&who, deposit).map_err(|_| Error::<T>::SignedCannotPayDeposit)?;

			let ejected_a_solution = maybe_removed.is_some();
			// if we had to remove the weakest solution, unreserve its deposit
			if let Some(removed) = maybe_removed {
				let _remainder = T::Currency::unreserve(&removed.who, removed.deposit);
				debug_assert!(_remainder.is_zero());
			}

			signed_submissions.put();
			Self::deposit_event(Event::SolutionStored {
				compute: ElectionCompute::Signed,
				prev_ejected: ejected_a_solution,
			});
			Ok(())
		}

		/// Trigger the governance fallback.
		///
		/// This can only be called when [`Phase::Emergency`] is enabled, as an alternative to
		/// calling [`Call::set_emergency_election_result`].
		#[pallet::weight(T::DbWeight::get().reads_writes(1, 1))]
		pub fn governance_fallback(
			origin: OriginFor<T>,
			maybe_max_voters: Option<u32>,
			maybe_max_targets: Option<u32>,
		) -> DispatchResult {
			T::ForceOrigin::ensure_origin(origin)?;
			ensure!(Self::current_phase().is_emergency(), <Error<T>>::CallNotAllowed);

			let maybe_max_voters = maybe_max_voters.map(|x| x as usize);
			let maybe_max_targets = maybe_max_targets.map(|x| x as usize);

			let supports = T::GovernanceFallback::elect_with_bounds(
				maybe_max_voters.unwrap_or(Bounded::max_value()),
				maybe_max_targets.unwrap_or(Bounded::max_value()),
			)
			.map_err(|e| {
				log!(error, "GovernanceFallback failed: {:?}", e);
				Error::<T>::FallbackFailed
			})?;

			let solution = ReadySolution {
				supports,
				score: Default::default(),
				compute: ElectionCompute::Fallback,
			};

			Self::deposit_event(Event::SolutionStored {
				compute: ElectionCompute::Fallback,
				prev_ejected: QueuedSolution::<T>::exists(),
			});

			<QueuedSolution<T>>::put(solution);
			Ok(())
		}
	}

	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event<T: Config> {
		/// A solution was stored with the given compute.
		///
		/// If the solution is signed, this means that it hasn't yet been processed. If the
		/// solution is unsigned, this means that it has also been processed.
		///
		/// The `bool` is `true` when a previous solution was ejected to make room for this one.
		SolutionStored { compute: ElectionCompute, prev_ejected: bool },
		/// The election has been finalized, with the given computation and score.
		ElectionFinalized { compute: ElectionCompute, score: ElectionScore },
		/// An election failed.
		///
		/// Not much can be said about which computes failed in the process.
		ElectionFailed,
		/// An account has been rewarded for their signed submission being finalized.
		Rewarded { account: <T as frame_system::Config>::AccountId, value: BalanceOf<T> },
		/// An account has been slashed for submitting an invalid signed submission.
		Slashed { account: <T as frame_system::Config>::AccountId, value: BalanceOf<T> },
		/// The signed phase of the given round has started.
		SignedPhaseStarted { round: u32 },
		/// The unsigned phase of the given round has started.
		UnsignedPhaseStarted { round: u32 },
	}

	/// Error of the pallet that can be returned in response to dispatches.
	#[pallet::error]
	pub enum Error<T> {
		/// Submission was too early.
		PreDispatchEarlySubmission,
		/// Wrong number of winners presented.
		PreDispatchWrongWinnerCount,
		/// Submission was too weak, score-wise.
		PreDispatchWeakSubmission,
		/// The queue was full, and the solution was not better than any of the existing ones.
		SignedQueueFull,
		/// The origin failed to pay the deposit.
		SignedCannotPayDeposit,
		/// Witness data to dispatchable is invalid.
		SignedInvalidWitness,
		/// The signed submission consumes too much weight
		SignedTooMuchWeight,
		/// OCW submitted solution for wrong round
		OcwCallWrongEra,
		/// Snapshot metadata should exist but didn't.
		MissingSnapshotMetadata,
		/// `Self::insert_submission` returned an invalid index.
		InvalidSubmissionIndex,
		/// The call is not allowed at this point.
		CallNotAllowed,
		/// The fallback failed
		FallbackFailed,
	}

	#[pallet::validate_unsigned]
	impl<T: Config> ValidateUnsigned for Pallet<T> {
		type Call = Call<T>;
		fn validate_unsigned(source: TransactionSource, call: &Self::Call) -> TransactionValidity {
			if let Call::submit_unsigned { raw_solution, .. } = call {
				// Discard solution not coming from the local OCW.
				match source {
					TransactionSource::Local | TransactionSource::InBlock => { /* allowed */ },
					_ => return InvalidTransaction::Call.into(),
				}

				let _ = Self::unsigned_pre_dispatch_checks(raw_solution)
					.map_err(|err| {
						log!(debug, "unsigned transaction validation failed due to {:?}", err);
						err
					})
					.map_err(dispatch_error_to_invalid)?;

				ValidTransaction::with_tag_prefix("OffchainElection")
					// The higher the score.minimal_stake, the better a solution is.
					.priority(
						T::MinerTxPriority::get()
							.saturating_add(raw_solution.score.minimal_stake.saturated_into()),
					)
					// Used to deduplicate unsigned solutions: each validator should produce one
					// solution per round at most, and solutions are not propagate.
					.and_provides(raw_solution.round)
					// Transaction should stay in the pool for the duration of the unsigned phase.
					.longevity(T::UnsignedPhase::get().saturated_into::<u64>())
					// We don't propagate this. This can never be validated at a remote node.
					.propagate(false)
					.build()
			} else {
				InvalidTransaction::Call.into()
			}
		}

		fn pre_dispatch(call: &Self::Call) -> Result<(), TransactionValidityError> {
			if let Call::submit_unsigned { raw_solution, .. } = call {
				Self::unsigned_pre_dispatch_checks(raw_solution)
					.map_err(dispatch_error_to_invalid)
					.map_err(Into::into)
			} else {
				Err(InvalidTransaction::Call.into())
			}
		}
	}

	#[pallet::type_value]
	pub fn DefaultForRound() -> u32 {
		1
	}

	/// Internal counter for the number of rounds.
	///
	/// This is useful for de-duplication of transactions submitted to the pool, and general
	/// diagnostics of the pallet.
	///
	/// This is merely incremented once per every time that an upstream `elect` is called.
	#[pallet::storage]
	#[pallet::getter(fn round)]
	pub type Round<T: Config> = StorageValue<_, u32, ValueQuery, DefaultForRound>;

	/// Current phase.
	#[pallet::storage]
	#[pallet::getter(fn current_phase)]
	pub type CurrentPhase<T: Config> = StorageValue<_, Phase<T::BlockNumber>, ValueQuery>;

	/// Current best solution, signed or unsigned, queued to be returned upon `elect`.
	#[pallet::storage]
	#[pallet::getter(fn queued_solution)]
	pub type QueuedSolution<T: Config> = StorageValue<_, ReadySolution<T::AccountId>>;

	/// Snapshot data of the round.
	///
	/// This is created at the beginning of the signed phase and cleared upon calling `elect`.
	#[pallet::storage]
	#[pallet::getter(fn snapshot)]
	pub type Snapshot<T: Config> = StorageValue<_, RoundSnapshot<T>>;

	/// Desired number of targets to elect for this round.
	///
	/// Only exists when [`Snapshot`] is present.
	#[pallet::storage]
	#[pallet::getter(fn desired_targets)]
	pub type DesiredTargets<T> = StorageValue<_, u32>;

	/// The metadata of the [`RoundSnapshot`]
	///
	/// Only exists when [`Snapshot`] is present.
	#[pallet::storage]
	#[pallet::getter(fn snapshot_metadata)]
	pub type SnapshotMetadata<T: Config> = StorageValue<_, SolutionOrSnapshotSize>;

	// The following storage items collectively comprise `SignedSubmissions<T>`, and should never be
	// accessed independently. Instead, get `Self::signed_submissions()`, modify it as desired, and
	// then do `signed_submissions.put()` when you're done with it.

	/// The next index to be assigned to an incoming signed submission.
	///
	/// Every accepted submission is assigned a unique index; that index is bound to that particular
	/// submission for the duration of the election. On election finalization, the next index is
	/// reset to 0.
	///
	/// We can't just use `SignedSubmissionIndices.len()`, because that's a bounded set; past its
	/// capacity, it will simply saturate. We can't just iterate over `SignedSubmissionsMap`,
	/// because iteration is slow. Instead, we store the value here.
	#[pallet::storage]
	pub type SignedSubmissionNextIndex<T: Config> = StorageValue<_, u32, ValueQuery>;

	/// A sorted, bounded set of `(score, index)`, where each `index` points to a value in
	/// `SignedSubmissions`.
	///
	/// We never need to process more than a single signed submission at a time. Signed submissions
	/// can be quite large, so we're willing to pay the cost of multiple database accesses to access
	/// them one at a time instead of reading and decoding all of them at once.
	#[pallet::storage]
	pub type SignedSubmissionIndices<T: Config> =
		StorageValue<_, SubmissionIndicesOf<T>, ValueQuery>;

	/// Unchecked, signed solutions.
	///
	/// Together with `SubmissionIndices`, this stores a bounded set of `SignedSubmissions` while
	/// allowing us to keep only a single one in memory at a time.
	///
	/// Twox note: the key of the map is an auto-incrementing index which users cannot inspect or
	/// affect; we shouldn't need a cryptographically secure hasher.
	#[pallet::storage]
	pub type SignedSubmissionsMap<T: Config> =
		StorageMap<_, Twox64Concat, u32, SignedSubmissionOf<T>, OptionQuery>;

	// `SignedSubmissions` items end here.

	/// The minimum score that each 'untrusted' solution must attain in order to be considered
	/// feasible.
	///
	/// Can be set via `set_minimum_untrusted_score`.
	#[pallet::storage]
	#[pallet::getter(fn minimum_untrusted_score)]
	pub type MinimumUntrustedScore<T: Config> = StorageValue<_, ElectionScore>;

	#[pallet::pallet]
	#[pallet::generate_store(pub(super) trait Store)]
	#[pallet::without_storage_info]
	pub struct Pallet<T>(PhantomData<T>);
}

impl<T: Config> Pallet<T> {
	/// Internal logic of the offchain worker, to be executed only when the offchain lock is
	/// acquired with success.
	fn do_synchronized_offchain_worker(now: T::BlockNumber) {
		let current_phase = Self::current_phase();
		log!(trace, "lock for offchain worker acquired. Phase = {:?}", current_phase);
		match current_phase {
			Phase::Unsigned((true, opened)) if opened == now => {
				// Mine a new solution, cache it, and attempt to submit it
				let initial_output = Self::ensure_offchain_repeat_frequency(now).and_then(|_| {
					// This is executed at the beginning of each round. Any cache is now invalid.
					// Clear it.
					unsigned::kill_ocw_solution::<T>();
					Self::mine_check_save_submit()
				});
				log!(debug, "initial offchain thread output: {:?}", initial_output);
			},
			Phase::Unsigned((true, opened)) if opened < now => {
				// Try and resubmit the cached solution, and recompute ONLY if it is not
				// feasible.
				let resubmit_output = Self::ensure_offchain_repeat_frequency(now)
					.and_then(|_| Self::restore_or_compute_then_maybe_submit());
				log!(debug, "resubmit offchain thread output: {:?}", resubmit_output);
			},
			_ => {},
		}
	}

	/// Logic for `<Pallet as Hooks>::on_initialize` when signed phase is being opened.
	pub fn on_initialize_open_signed() {
		log!(info, "Starting signed phase round {}.", Self::round());
		<CurrentPhase<T>>::put(Phase::Signed);
		Self::deposit_event(Event::SignedPhaseStarted { round: Self::round() });
	}

	/// Logic for `<Pallet as Hooks<T>>::on_initialize` when unsigned phase is being opened.
	pub fn on_initialize_open_unsigned(enabled: bool, now: T::BlockNumber) {
		let round = Self::round();
		log!(info, "Starting unsigned phase round {} enabled {}.", round, enabled);
		<CurrentPhase<T>>::put(Phase::Unsigned((enabled, now)));
		Self::deposit_event(Event::UnsignedPhaseStarted { round });
	}

	/// Parts of [`create_snapshot`] that happen inside of this pallet.
	///
	/// Extracted for easier weight calculation.
	fn create_snapshot_internal(
		targets: Vec<T::AccountId>,
		voters: Vec<VoterOf<T>>,
		desired_targets: u32,
	) {
		let metadata =
			SolutionOrSnapshotSize { voters: voters.len() as u32, targets: targets.len() as u32 };
		log!(info, "creating a snapshot with metadata {:?}", metadata);

		<SnapshotMetadata<T>>::put(metadata);
		<DesiredTargets<T>>::put(desired_targets);

		// instead of using storage APIs, we do a manual encoding into a fixed-size buffer.
		// `encoded_size` encodes it without storing it anywhere, this should not cause any
		// allocation.
		let snapshot = RoundSnapshot::<T> { voters, targets };
		let size = snapshot.encoded_size();
		log!(debug, "snapshot pre-calculated size {:?}", size);
		let mut buffer = Vec::with_capacity(size);
		snapshot.encode_to(&mut buffer);

		// do some checks.
		debug_assert_eq!(buffer, snapshot.encode());
		// buffer should have not re-allocated since.
		debug_assert!(buffer.len() == size && size == buffer.capacity());

		sp_io::storage::set(&<Snapshot<T>>::hashed_key(), &buffer);
	}

	/// Parts of [`create_snapshot`] that happen outside of this pallet.
	///
	/// Extracted for easier weight calculation.
	fn create_snapshot_external(
	) -> Result<(Vec<T::AccountId>, Vec<VoterOf<T>>, u32), ElectionError<T>> {
		let target_limit = T::MaxElectableTargets::get().saturated_into::<usize>();
		let voter_limit = T::MaxElectingVoters::get().saturated_into::<usize>();

		let targets = T::DataProvider::electable_targets(Some(target_limit))
			.map_err(ElectionError::DataProvider)?;
		let voters = T::DataProvider::electing_voters(Some(voter_limit))
			.map_err(ElectionError::DataProvider)?;
		let mut desired_targets =
			T::DataProvider::desired_targets().map_err(ElectionError::DataProvider)?;

		// Defensive-only.
		if targets.len() > target_limit || voters.len() > voter_limit {
			debug_assert!(false, "Snapshot limit has not been respected.");
			return Err(ElectionError::DataProvider("Snapshot too big for submission."))
		}

		// If `desired_targets` > `targets.len()`, cap `desired_targets` to that level and emit a
		// warning
		let max_len = targets
			.len()
			.try_into()
			.map_err(|_| ElectionError::DataProvider("Failed to convert usize"))?;
		if desired_targets > max_len {
			log!(
				warn,
				"desired_targets: {} > targets.len(): {}, capping desired_targets",
				desired_targets,
				max_len
			);
			desired_targets = max_len;
		}

		Ok((targets, voters, desired_targets))
	}

	/// Creates the snapshot. Writes new data to:
	///
	/// 1. [`SnapshotMetadata`]
	/// 2. [`RoundSnapshot`]
	/// 3. [`DesiredTargets`]
	///
	/// Returns `Ok(())` if operation is okay.
	///
	/// This is a *self-weighing* function, it will register its own extra weight as
	/// [`DispatchClass::Mandatory`] with the system pallet.
	pub fn create_snapshot() -> Result<(), ElectionError<T>> {
		// this is self-weighing itself..
		let (targets, voters, desired_targets) = Self::create_snapshot_external()?;

		// ..therefore we only measure the weight of this and add it.
		let internal_weight =
			T::WeightInfo::create_snapshot_internal(voters.len() as u32, targets.len() as u32);
		Self::create_snapshot_internal(targets, voters, desired_targets);
		Self::register_weight(internal_weight);
		Ok(())
	}

	/// Register some amount of weight directly with the system pallet.
	///
	/// This is always mandatory weight.
	fn register_weight(weight: Weight) {
		<frame_system::Pallet<T>>::register_extra_weight_unchecked(
			weight,
			DispatchClass::Mandatory,
		);
	}

	/// Kill everything created by [`Pallet::create_snapshot`].
	pub fn kill_snapshot() {
		<Snapshot<T>>::kill();
		<SnapshotMetadata<T>>::kill();
		<DesiredTargets<T>>::kill();
	}

	/// Checks the feasibility of a solution.
	pub fn feasibility_check(
		raw_solution: RawSolution<SolutionOf<T::MinerConfig>>,
		compute: ElectionCompute,
	) -> Result<ReadySolution<T::AccountId>, FeasibilityError> {
		let RawSolution { solution, score, round } = raw_solution;

		// First, check round.
		ensure!(Self::round() == round, FeasibilityError::InvalidRound);

		// Winners are not directly encoded in the solution.
		let winners = solution.unique_targets();

		let desired_targets =
			Self::desired_targets().ok_or(FeasibilityError::SnapshotUnavailable)?;

		ensure!(winners.len() as u32 == desired_targets, FeasibilityError::WrongWinnerCount);

		// Ensure that the solution's score can pass absolute min-score.
		let submitted_score = raw_solution.score;
		ensure!(
			Self::minimum_untrusted_score().map_or(true, |min_score| {
				submitted_score.strict_threshold_better(min_score, Perbill::zero())
			}),
			FeasibilityError::UntrustedScoreTooLow
		);

		// Read the entire snapshot.
		let RoundSnapshot { voters: snapshot_voters, targets: snapshot_targets } =
			Self::snapshot().ok_or(FeasibilityError::SnapshotUnavailable)?;

		// ----- Start building. First, we need some closures.
		let cache = helpers::generate_voter_cache::<T::MinerConfig>(&snapshot_voters);
		let voter_at = helpers::voter_at_fn::<T::MinerConfig>(&snapshot_voters);
		let target_at = helpers::target_at_fn::<T::MinerConfig>(&snapshot_targets);
		let voter_index = helpers::voter_index_fn_usize::<T::MinerConfig>(&cache);

		// Then convert solution -> assignment. This will fail if any of the indices are gibberish,
		// namely any of the voters or targets.
		let assignments = solution
			.into_assignment(voter_at, target_at)
			.map_err::<FeasibilityError, _>(Into::into)?;

		// Ensure that assignments is correct.
		let _ = assignments.iter().try_for_each(|assignment| {
			// Check that assignment.who is actually a voter (defensive-only).
			// NOTE: while using the index map from `voter_index` is better than a blind linear
			// search, this *still* has room for optimization. Note that we had the index when
			// we did `solution -> assignment` and we lost it. Ideal is to keep the index
			// around.

			// Defensive-only: must exist in the snapshot.
			let snapshot_index =
				voter_index(&assignment.who).ok_or(FeasibilityError::InvalidVoter)?;
			// Defensive-only: index comes from the snapshot, must exist.
			let (_voter, _stake, targets) =
				snapshot_voters.get(snapshot_index).ok_or(FeasibilityError::InvalidVoter)?;

			// Check that all of the targets are valid based on the snapshot.
			if assignment.distribution.iter().any(|(d, _)| !targets.contains(d)) {
				return Err(FeasibilityError::InvalidVote)
			}
			Ok(())
		})?;

		// ----- Start building support. First, we need one more closure.
		let stake_of = helpers::stake_of_fn::<T::MinerConfig>(&snapshot_voters, &cache);

		// This might fail if the normalization fails. Very unlikely. See `integrity_test`.
		let staked_assignments = assignment_ratio_to_staked_normalized(assignments, stake_of)
			.map_err::<FeasibilityError, _>(Into::into)?;
		let supports = sp_npos_elections::to_supports(&staked_assignments);

		// Finally, check that the claimed score was indeed correct.
		let known_score = supports.evaluate();
		ensure!(known_score == score, FeasibilityError::InvalidScore);

		Ok(ReadySolution { supports, compute, score })
	}

	/// Perform the tasks to be done after a new `elect` has been triggered:
	///
	/// 1. Increment round.
	/// 2. Change phase to [`Phase::Off`]
	/// 3. Clear all snapshot data.
	fn rotate_round() {
		// Inc round.
		<Round<T>>::mutate(|r| *r += 1);

		// Phase is off now.
		<CurrentPhase<T>>::put(Phase::Off);

		// Kill snapshots.
		Self::kill_snapshot();
	}

	fn do_elect() -> Result<Supports<T::AccountId>, ElectionError<T>> {
		// We have to unconditionally try finalizing the signed phase here. There are only two
		// possibilities:
		//
		// - signed phase was open, in which case this is essential for correct functioning of the
		//   system
		// - signed phase was complete or not started, in which case finalization is idempotent and
		//   inexpensive (1 read of an empty vector).
		let _ = Self::finalize_signed_phase();
		<QueuedSolution<T>>::take()
			.ok_or(ElectionError::<T>::NothingQueued)
			.or_else(|_| {
				T::Fallback::elect()
					.map(|supports| ReadySolution {
						supports,
						score: Default::default(),
						compute: ElectionCompute::Fallback,
					})
					.map_err(|fe| ElectionError::Fallback(fe))
			})
			.map(|ReadySolution { compute, score, supports }| {
				Self::deposit_event(Event::ElectionFinalized { compute, score });
				if Self::round() != 1 {
					log!(info, "Finalized election round with compute {:?}.", compute);
				}
				supports
			})
			.map_err(|err| {
				Self::deposit_event(Event::ElectionFailed);
				if Self::round() != 1 {
					log!(warn, "Failed to finalize election round. reason {:?}", err);
				}
				err
			})
	}

	/// record the weight of the given `supports`.
	fn weigh_supports(supports: &Supports<T::AccountId>) {
		let active_voters = supports
			.iter()
			.map(|(_, x)| x)
			.fold(Zero::zero(), |acc, next| acc + next.voters.len() as u32);
		let desired_targets = supports.len() as u32;
		Self::register_weight(T::WeightInfo::elect_queued(active_voters, desired_targets));
	}
}

impl<T: Config> ElectionProvider for Pallet<T> {
	type AccountId = T::AccountId;
	type BlockNumber = T::BlockNumber;
	type Error = ElectionError<T>;
	type DataProvider = T::DataProvider;

	fn elect() -> Result<Supports<T::AccountId>, Self::Error> {
		match Self::do_elect() {
			Ok(supports) => {
				// All went okay, record the weight, put sign to be Off, clean snapshot, etc.
				Self::weigh_supports(&supports);
				Self::rotate_round();
				Ok(supports)
			},
			Err(why) => {
				log!(error, "Entering emergency mode: {:?}", why);
				<CurrentPhase<T>>::put(Phase::Emergency);
				Err(why)
			},
		}
	}
}

/// convert a DispatchError to a custom InvalidTransaction with the inner code being the error
/// number.
pub fn dispatch_error_to_invalid(error: DispatchError) -> InvalidTransaction {
	let error_number = match error {
		DispatchError::Module(ModuleError { error, .. }) => error[0],
		_ => 0,
	};
	InvalidTransaction::Custom(error_number)
}

#[cfg(test)]
mod feasibility_check {
	//! All of the tests here should be dedicated to only testing the feasibility check and nothing
	//! more. The best way to audit and review these tests is to try and come up with a solution
	//! that is invalid, but gets through the system as valid.

	use super::*;
	use crate::mock::{
		raw_solution, roll_to, EpochLength, ExtBuilder, MultiPhase, Runtime, SignedPhase,
		TargetIndex, UnsignedPhase, VoterIndex,
	};
	use frame_support::{assert_noop, assert_ok};

	const COMPUTE: ElectionCompute = ElectionCompute::OnChain;

	#[test]
	fn snapshot_is_there() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());
			let solution = raw_solution();

			// For whatever reason it might be:
			<Snapshot<Runtime>>::kill();

			assert_noop!(
				MultiPhase::feasibility_check(solution, COMPUTE),
				FeasibilityError::SnapshotUnavailable
			);
		})
	}

	#[test]
	fn round() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let mut solution = raw_solution();
			solution.round += 1;
			assert_noop!(
				MultiPhase::feasibility_check(solution, COMPUTE),
				FeasibilityError::InvalidRound
			);
		})
	}

	#[test]
	fn desired_targets_gets_capped() {
		ExtBuilder::default().desired_targets(8).build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let raw = raw_solution();

			assert_eq!(raw.solution.unique_targets().len(), 4);
			// desired_targets is capped to the number of targets which is 4
			assert_eq!(MultiPhase::desired_targets().unwrap(), 4);

			// It should succeed
			assert_ok!(MultiPhase::feasibility_check(raw, COMPUTE));
		})
	}

	#[test]
	fn less_than_desired_targets_fails() {
		ExtBuilder::default().desired_targets(8).build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let mut raw = raw_solution();

			assert_eq!(raw.solution.unique_targets().len(), 4);
			// desired_targets is capped to the number of targets which is 4
			assert_eq!(MultiPhase::desired_targets().unwrap(), 4);

			// Force the number of winners to be bigger to fail
			raw.solution.votes1[0].1 = 4;

			// It should succeed
			assert_noop!(
				MultiPhase::feasibility_check(raw, COMPUTE),
				FeasibilityError::WrongWinnerCount,
			);
		})
	}

	#[test]
	fn winner_indices() {
		ExtBuilder::default().desired_targets(2).build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let mut raw = raw_solution();
			assert_eq!(MultiPhase::snapshot().unwrap().targets.len(), 4);
			// ----------------------------------------------------^^ valid range is [0..3].

			// Swap all votes from 3 to 4. This will ensure that the number of unique winners will
			// still be 4, but one of the indices will be gibberish. Requirement is to make sure 3 a
			// winner, which we don't do here.
			raw.solution
				.votes1
				.iter_mut()
				.filter(|(_, t)| *t == TargetIndex::from(3u16))
				.for_each(|(_, t)| *t += 1);
			raw.solution.votes2.iter_mut().for_each(|(_, [(t0, _)], t1)| {
				if *t0 == TargetIndex::from(3u16) {
					*t0 += 1
				};
				if *t1 == TargetIndex::from(3u16) {
					*t1 += 1
				};
			});
			assert_noop!(
				MultiPhase::feasibility_check(raw, COMPUTE),
				FeasibilityError::NposElection(sp_npos_elections::Error::SolutionInvalidIndex)
			);
		})
	}

	#[test]
	fn voter_indices() {
		// Should be caught in `solution.into_assignment`.
		ExtBuilder::default().desired_targets(2).build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let mut solution = raw_solution();
			assert_eq!(MultiPhase::snapshot().unwrap().voters.len(), 8);
			// ----------------------------------------------------^^ valid range is [0..7].

			// Check that there is an index 7 in votes1, and flip to 8.
			assert!(
				solution
					.solution
					.votes1
					.iter_mut()
					.filter(|(v, _)| *v == VoterIndex::from(7u32))
					.map(|(v, _)| *v = 8)
					.count() > 0
			);
			assert_noop!(
				MultiPhase::feasibility_check(solution, COMPUTE),
				FeasibilityError::NposElection(sp_npos_elections::Error::SolutionInvalidIndex),
			);
		})
	}

	#[test]
	fn voter_votes() {
		ExtBuilder::default().desired_targets(2).build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let mut solution = raw_solution();
			assert_eq!(MultiPhase::snapshot().unwrap().voters.len(), 8);
			// ----------------------------------------------------^^ valid range is [0..7].

			// First, check that voter at index 7 (40) actually voted for 3 (40) -- this is self
			// vote. Then, change the vote to 2 (30).
			assert_eq!(
				solution
					.solution
					.votes1
					.iter_mut()
					.filter(|(v, t)| *v == 7 && *t == 3)
					.map(|(_, t)| *t = 2)
					.count(),
				1,
			);
			assert_noop!(
				MultiPhase::feasibility_check(solution, COMPUTE),
				FeasibilityError::InvalidVote,
			);
		})
	}

	#[test]
	fn score() {
		ExtBuilder::default().desired_targets(2).build_and_execute(|| {
			roll_to(<EpochLength>::get() - <SignedPhase>::get() - <UnsignedPhase>::get());
			assert!(MultiPhase::current_phase().is_signed());

			let mut solution = raw_solution();
			assert_eq!(MultiPhase::snapshot().unwrap().voters.len(), 8);

			// Simply faff with the score.
			solution.score.minimal_stake += 1;

			assert_noop!(
				MultiPhase::feasibility_check(solution, COMPUTE),
				FeasibilityError::InvalidScore,
			);
		})
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{
		mock::{
			multi_phase_events, raw_solution, roll_to, AccountId, ExtBuilder, MockWeightInfo,
			MockedWeightInfo, MultiPhase, Origin, Runtime, SignedMaxSubmissions, System,
			TargetIndex, Targets,
		},
		Phase,
	};
	use frame_election_provider_support::ElectionProvider;
	use frame_support::{assert_noop, assert_ok};
	use sp_npos_elections::{BalancingConfig, Support};

	#[test]
	fn phase_rotation_works() {
		ExtBuilder::default().build_and_execute(|| {
			// 0 ------- 15 ------- 25 ------- 30 ------- ------- 45 ------- 55 ------- 60
			//           |           |          |                 |           |          |
			//         Signed      Unsigned   Elect             Signed     Unsigned    Elect

			assert_eq!(System::block_number(), 0);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);
			assert_eq!(MultiPhase::round(), 1);

			roll_to(4);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);
			assert!(MultiPhase::snapshot().is_none());
			assert_eq!(MultiPhase::round(), 1);

			roll_to(15);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);
			assert_eq!(multi_phase_events(), vec![Event::SignedPhaseStarted { round: 1 }]);
			assert!(MultiPhase::snapshot().is_some());
			assert_eq!(MultiPhase::round(), 1);

			roll_to(24);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);
			assert!(MultiPhase::snapshot().is_some());
			assert_eq!(MultiPhase::round(), 1);

			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			assert_eq!(
				multi_phase_events(),
				vec![
					Event::SignedPhaseStarted { round: 1 },
					Event::UnsignedPhaseStarted { round: 1 }
				],
			);
			assert!(MultiPhase::snapshot().is_some());

			roll_to(29);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			assert!(MultiPhase::snapshot().is_some());

			roll_to(30);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			assert!(MultiPhase::snapshot().is_some());

			// We close when upstream tells us to elect.
			roll_to(32);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			assert!(MultiPhase::snapshot().is_some());

			assert_ok!(MultiPhase::elect());

			assert!(MultiPhase::current_phase().is_off());
			assert!(MultiPhase::snapshot().is_none());
			assert_eq!(MultiPhase::round(), 2);

			roll_to(44);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(45);
			assert!(MultiPhase::current_phase().is_signed());

			roll_to(55);
			assert!(MultiPhase::current_phase().is_unsigned_open_at(55));
		})
	}

	#[test]
	fn signed_phase_void() {
		ExtBuilder::default().phases(0, 10).build_and_execute(|| {
			roll_to(15);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(19);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(20);
			assert!(MultiPhase::current_phase().is_unsigned_open_at(20));
			assert!(MultiPhase::snapshot().is_some());

			roll_to(30);
			assert!(MultiPhase::current_phase().is_unsigned_open_at(20));

			assert_ok!(MultiPhase::elect());

			assert!(MultiPhase::current_phase().is_off());
			assert!(MultiPhase::snapshot().is_none());
		});
	}

	#[test]
	fn unsigned_phase_void() {
		ExtBuilder::default().phases(10, 0).build_and_execute(|| {
			roll_to(15);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(19);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(20);
			assert!(MultiPhase::current_phase().is_signed());
			assert!(MultiPhase::snapshot().is_some());

			roll_to(30);
			assert!(MultiPhase::current_phase().is_signed());

			assert_ok!(MultiPhase::elect());

			assert!(MultiPhase::current_phase().is_off());
			assert!(MultiPhase::snapshot().is_none());
		});
	}

	#[test]
	fn both_phases_void() {
		ExtBuilder::default().phases(0, 0).build_and_execute(|| {
			roll_to(15);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(19);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(20);
			assert!(MultiPhase::current_phase().is_off());

			roll_to(30);
			assert!(MultiPhase::current_phase().is_off());

			// This module is now only capable of doing on-chain backup.
			assert_ok!(MultiPhase::elect());

			assert!(MultiPhase::current_phase().is_off());
		});
	}

	#[test]
	fn early_termination() {
		// An early termination in the signed phase, with no queued solution.
		ExtBuilder::default().build_and_execute(|| {
			// Signed phase started at block 15 and will end at 25.
			roll_to(14);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			roll_to(15);
			assert_eq!(multi_phase_events(), vec![Event::SignedPhaseStarted { round: 1 }]);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);
			assert_eq!(MultiPhase::round(), 1);

			// An unexpected call to elect.
			roll_to(20);
			assert_ok!(MultiPhase::elect());

			// We surely can't have any feasible solutions. This will cause an on-chain election.
			assert_eq!(
				multi_phase_events(),
				vec![
					Event::SignedPhaseStarted { round: 1 },
					Event::ElectionFinalized {
						compute: ElectionCompute::Fallback,
						score: Default::default()
					}
				],
			);
			// All storage items must be cleared.
			assert_eq!(MultiPhase::round(), 2);
			assert!(MultiPhase::snapshot().is_none());
			assert!(MultiPhase::snapshot_metadata().is_none());
			assert!(MultiPhase::desired_targets().is_none());
			assert!(MultiPhase::queued_solution().is_none());
			assert!(MultiPhase::signed_submissions().is_empty());
		})
	}

	#[test]
	fn early_termination_with_submissions() {
		// an early termination in the signed phase, with no queued solution.
		ExtBuilder::default().build_and_execute(|| {
			// signed phase started at block 15 and will end at 25.
			roll_to(14);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			roll_to(15);
			assert_eq!(multi_phase_events(), vec![Event::SignedPhaseStarted { round: 1 }]);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);
			assert_eq!(MultiPhase::round(), 1);

			// fill the queue with signed submissions
			for s in 0..SignedMaxSubmissions::get() {
				let solution = RawSolution {
					score: ElectionScore { minimal_stake: (5 + s).into(), ..Default::default() },
					..Default::default()
				};
				assert_ok!(MultiPhase::submit(crate::mock::Origin::signed(99), Box::new(solution)));
			}

			// an unexpected call to elect.
			roll_to(20);
			assert_ok!(MultiPhase::elect());

			// all storage items must be cleared.
			assert_eq!(MultiPhase::round(), 2);
			assert!(MultiPhase::snapshot().is_none());
			assert!(MultiPhase::snapshot_metadata().is_none());
			assert!(MultiPhase::desired_targets().is_none());
			assert!(MultiPhase::queued_solution().is_none());
			assert!(MultiPhase::signed_submissions().is_empty());
		})
	}

	#[test]
	fn check_events_with_compute_signed() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(14);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			roll_to(15);
			assert!(MultiPhase::current_phase().is_signed());

			let solution = raw_solution();
			assert_ok!(MultiPhase::submit(crate::mock::Origin::signed(99), Box::new(solution)));

			roll_to(30);
			assert_ok!(MultiPhase::elect());

			assert_eq!(
				multi_phase_events(),
				vec![
					Event::SignedPhaseStarted { round: 1 },
					Event::SolutionStored { compute: ElectionCompute::Signed, prev_ejected: false },
					Event::Rewarded { account: 99, value: 7 },
					Event::UnsignedPhaseStarted { round: 1 },
					Event::ElectionFinalized {
						compute: ElectionCompute::Signed,
						score: ElectionScore {
							minimal_stake: 40,
							sum_stake: 100,
							sum_stake_squared: 5200
						}
					}
				],
			);
		})
	}

	#[test]
	fn check_events_with_compute_unsigned() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// ensure we have snapshots in place.
			assert!(MultiPhase::snapshot().is_some());
			assert_eq!(MultiPhase::desired_targets().unwrap(), 2);

			// mine seq_phragmen solution with 2 iters.
			let (solution, witness) = MultiPhase::mine_solution().unwrap();

			// ensure this solution is valid.
			assert!(MultiPhase::queued_solution().is_none());
			assert_ok!(MultiPhase::submit_unsigned(
				crate::mock::Origin::none(),
				Box::new(solution),
				witness
			));
			assert!(MultiPhase::queued_solution().is_some());

			roll_to(30);
			assert_ok!(MultiPhase::elect());

			assert_eq!(
				multi_phase_events(),
				vec![
					Event::SignedPhaseStarted { round: 1 },
					Event::UnsignedPhaseStarted { round: 1 },
					Event::SolutionStored {
						compute: ElectionCompute::Unsigned,
						prev_ejected: false
					},
					Event::ElectionFinalized {
						compute: ElectionCompute::Unsigned,
						score: ElectionScore {
							minimal_stake: 40,
							sum_stake: 100,
							sum_stake_squared: 5200
						}
					}
				],
			);
		})
	}

	#[test]
	fn fallback_strategy_works() {
		ExtBuilder::default().onchain_fallback(true).build_and_execute(|| {
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));

			// Zilch solutions thus far, but we get a result.
			assert!(MultiPhase::queued_solution().is_none());
			let supports = MultiPhase::elect().unwrap();

			assert_eq!(
				supports,
				vec![
					(30, Support { total: 40, voters: vec![(2, 5), (4, 5), (30, 30)] }),
					(40, Support { total: 60, voters: vec![(2, 5), (3, 10), (4, 5), (40, 40)] })
				]
			)
		});

		ExtBuilder::default().onchain_fallback(false).build_and_execute(|| {
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));

			// Zilch solutions thus far.
			assert!(MultiPhase::queued_solution().is_none());
			assert_eq!(MultiPhase::elect().unwrap_err(), ElectionError::Fallback("NoFallback."));
			// phase is now emergency.
			assert_eq!(MultiPhase::current_phase(), Phase::Emergency);
		})
	}

	#[test]
	fn governance_fallback_works() {
		ExtBuilder::default().onchain_fallback(false).build_and_execute(|| {
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));

			// Zilch solutions thus far.
			assert!(MultiPhase::queued_solution().is_none());
			assert_eq!(MultiPhase::elect().unwrap_err(), ElectionError::Fallback("NoFallback."));

			// phase is now emergency.
			assert_eq!(MultiPhase::current_phase(), Phase::Emergency);
			assert!(MultiPhase::queued_solution().is_none());

			// no single account can trigger this
			assert_noop!(
				MultiPhase::governance_fallback(Origin::signed(99), None, None),
				DispatchError::BadOrigin
			);

			// only root can
			assert_ok!(MultiPhase::governance_fallback(Origin::root(), None, None));
			// something is queued now
			assert!(MultiPhase::queued_solution().is_some());
			// next election call with fix everything.;
			assert!(MultiPhase::elect().is_ok());
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			assert_eq!(
				multi_phase_events(),
				vec![
					Event::SignedPhaseStarted { round: 1 },
					Event::UnsignedPhaseStarted { round: 1 },
					Event::ElectionFailed,
					Event::SolutionStored {
						compute: ElectionCompute::Fallback,
						prev_ejected: false
					},
					Event::ElectionFinalized {
						compute: ElectionCompute::Fallback,
						score: Default::default()
					}
				]
			);
		})
	}

	#[test]
	fn snapshot_too_big_failure_onchain_fallback() {
		// the `MockStaking` is designed such that if it has too many targets, it simply fails.
		ExtBuilder::default().build_and_execute(|| {
			Targets::set((0..(TargetIndex::max_value() as AccountId) + 1).collect::<Vec<_>>());

			// Signed phase failed to open.
			roll_to(15);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			// Unsigned phase failed to open.
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			// On-chain backup works though.
			roll_to(29);
			let supports = MultiPhase::elect().unwrap();
			assert!(supports.len() > 0);
		});
	}

	#[test]
	fn snapshot_too_big_failure_no_fallback() {
		// and if the backup mode is nothing, we go into the emergency mode..
		ExtBuilder::default().onchain_fallback(false).build_and_execute(|| {
			crate::mock::Targets::set(
				(0..(TargetIndex::max_value() as AccountId) + 1).collect::<Vec<_>>(),
			);

			// Signed phase failed to open.
			roll_to(15);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			// Unsigned phase failed to open.
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Off);

			roll_to(29);
			let err = MultiPhase::elect().unwrap_err();
			assert_eq!(err, ElectionError::Fallback("NoFallback."));
			assert_eq!(MultiPhase::current_phase(), Phase::Emergency);
		});
	}

	#[test]
	fn snapshot_too_big_truncate() {
		// but if there are too many voters, we simply truncate them.
		ExtBuilder::default().build_and_execute(|| {
			// we have 8 voters in total.
			assert_eq!(crate::mock::Voters::get().len(), 8);
			// but we want to take 2.
			crate::mock::MaxElectingVoters::set(2);

			// Signed phase opens just fine.
			roll_to(15);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);

			assert_eq!(
				MultiPhase::snapshot_metadata().unwrap(),
				SolutionOrSnapshotSize { voters: 2, targets: 4 }
			);
		})
	}

	#[test]
	fn untrusted_score_verification_is_respected() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(15);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);

			// set the solution balancing to get the desired score.
			crate::mock::Balancing::set(Some(BalancingConfig { iterations: 2, tolerance: 0 }));

			let (solution, _) = MultiPhase::mine_solution().unwrap();
			// Default solution's score.
			assert!(matches!(solution.score, ElectionScore { minimal_stake: 50, .. }));

			<MinimumUntrustedScore<Runtime>>::put(ElectionScore {
				minimal_stake: 49,
				..Default::default()
			});
			assert_ok!(MultiPhase::feasibility_check(solution.clone(), ElectionCompute::Signed));

			<MinimumUntrustedScore<Runtime>>::put(ElectionScore {
				minimal_stake: 51,
				..Default::default()
			});
			assert_noop!(
				MultiPhase::feasibility_check(solution, ElectionCompute::Signed),
				FeasibilityError::UntrustedScoreTooLow,
			);
		})
	}

	#[test]
	fn number_of_voters_allowed_2sec_block() {
		// Just a rough estimate with the substrate weights.
		assert_eq!(MockWeightInfo::get(), MockedWeightInfo::Real);

		let all_voters: u32 = 10_000;
		let all_targets: u32 = 5_000;
		let desired: u32 = 1_000;
		let weight_with = |active| {
			<Runtime as Config>::WeightInfo::submit_unsigned(
				all_voters,
				all_targets,
				active,
				desired,
			)
		};

		let mut active = 1;
		while weight_with(active) <=
			<Runtime as frame_system::Config>::BlockWeights::get().max_block ||
			active == all_voters
		{
			active += 1;
		}

		println!("can support {} voters to yield a weight of {}", active, weight_with(active));
	}
}