1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// This file is part of Substrate.

// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![warn(missing_docs)]
#![warn(unused_crate_dependencies)]

//! Node-specific RPC methods for interaction with Merkle Mountain Range pallet.

use std::{marker::PhantomData, sync::Arc};

use codec::{Codec, Encode};
use jsonrpsee::{
	core::{async_trait, RpcResult},
	proc_macros::rpc,
	types::error::{CallError, ErrorObject},
};
use serde::{Deserialize, Serialize};

use sp_api::ProvideRuntimeApi;
use sp_blockchain::HeaderBackend;
use sp_core::Bytes;
use sp_mmr_primitives::{BatchProof, Error as MmrError, LeafIndex, Proof};
use sp_runtime::{generic::BlockId, traits::Block as BlockT};

pub use sp_mmr_primitives::MmrApi as MmrRuntimeApi;

const RUNTIME_ERROR: i32 = 8000;
const MMR_ERROR: i32 = 8010;
const LEAF_NOT_FOUND_ERROR: i32 = MMR_ERROR + 1;
const GENERATE_PROOF_ERROR: i32 = MMR_ERROR + 2;

/// Retrieved MMR leaf and its proof.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
#[serde(rename_all = "camelCase")]
pub struct LeafProof<BlockHash> {
	/// Block hash the proof was generated for.
	pub block_hash: BlockHash,
	/// SCALE-encoded leaf data.
	pub leaf: Bytes,
	/// SCALE-encoded proof data. See [sp_mmr_primitives::Proof].
	pub proof: Bytes,
}

impl<BlockHash> LeafProof<BlockHash> {
	/// Create new `LeafProof` from given concrete `leaf` and `proof`.
	pub fn new<Leaf, MmrHash>(block_hash: BlockHash, leaf: Leaf, proof: Proof<MmrHash>) -> Self
	where
		Leaf: Encode,
		MmrHash: Encode,
	{
		Self { block_hash, leaf: Bytes(leaf.encode()), proof: Bytes(proof.encode()) }
	}
}

/// Retrieved MMR leaves and their proof.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
#[serde(rename_all = "camelCase")]
pub struct LeafBatchProof<BlockHash> {
	/// Block hash the proof was generated for.
	pub block_hash: BlockHash,
	/// SCALE-encoded vector of `LeafData`.
	pub leaves: Bytes,
	/// SCALE-encoded proof data. See [sp_mmr_primitives::BatchProof].
	pub proof: Bytes,
}

impl<BlockHash> LeafBatchProof<BlockHash> {
	/// Create new `LeafBatchProof` from a given vector of `Leaf` and a
	/// [sp_mmr_primitives::BatchProof].
	pub fn new<Leaf, MmrHash>(
		block_hash: BlockHash,
		leaves: Vec<Leaf>,
		proof: BatchProof<MmrHash>,
	) -> Self
	where
		Leaf: Encode,
		MmrHash: Encode,
	{
		Self { block_hash, leaves: Bytes(leaves.encode()), proof: Bytes(proof.encode()) }
	}
}

/// MMR RPC methods.
#[rpc(client, server)]
pub trait MmrApi<BlockHash> {
	/// Generate MMR proof for given leaf index.
	///
	/// This method calls into a runtime with MMR pallet included and attempts to generate
	/// MMR proof for leaf at given `leaf_index`.
	/// Optionally, a block hash at which the runtime should be queried can be specified.
	///
	/// Returns the (full) leaf itself and a proof for this leaf (compact encoding, i.e. hash of
	/// the leaf). Both parameters are SCALE-encoded.
	#[method(name = "mmr_generateProof")]
	fn generate_proof(
		&self,
		leaf_index: LeafIndex,
		at: Option<BlockHash>,
	) -> RpcResult<LeafProof<BlockHash>>;

	/// Generate MMR proof for the given leaf indices.
	///
	/// This method calls into a runtime with MMR pallet included and attempts to generate
	/// MMR proof for a set of leaves at the given `leaf_indices`.
	/// Optionally, a block hash at which the runtime should be queried can be specified.
	///
	/// Returns the leaves and a proof for these leaves (compact encoding, i.e. hash of
	/// the leaves). Both parameters are SCALE-encoded.
	/// The order of entries in the `leaves` field of the returned struct
	/// is the same as the order of the entries in `leaf_indices` supplied
	#[method(name = "mmr_generateBatchProof")]
	fn generate_batch_proof(
		&self,
		leaf_indices: Vec<LeafIndex>,
		at: Option<BlockHash>,
	) -> RpcResult<LeafBatchProof<BlockHash>>;
}

/// MMR RPC methods.
pub struct Mmr<Client, Block> {
	client: Arc<Client>,
	_marker: PhantomData<Block>,
}

impl<C, B> Mmr<C, B> {
	/// Create new `Mmr` with the given reference to the client.
	pub fn new(client: Arc<C>) -> Self {
		Self { client, _marker: Default::default() }
	}
}

#[async_trait]
impl<Client, Block, MmrHash> MmrApiServer<<Block as BlockT>::Hash> for Mmr<Client, (Block, MmrHash)>
where
	Block: BlockT,
	Client: Send + Sync + 'static + ProvideRuntimeApi<Block> + HeaderBackend<Block>,
	Client::Api: MmrRuntimeApi<Block, MmrHash>,
	MmrHash: Codec + Send + Sync + 'static,
{
	fn generate_proof(
		&self,
		leaf_index: LeafIndex,
		at: Option<<Block as BlockT>::Hash>,
	) -> RpcResult<LeafProof<Block::Hash>> {
		let api = self.client.runtime_api();
		let block_hash = at.unwrap_or_else(|| self.client.info().best_hash);

		let (leaf, proof) = api
			.generate_proof_with_context(
				&BlockId::hash(block_hash),
				sp_core::ExecutionContext::OffchainCall(None),
				leaf_index,
			)
			.map_err(runtime_error_into_rpc_error)?
			.map_err(mmr_error_into_rpc_error)?;

		Ok(LeafProof::new(block_hash, leaf, proof))
	}

	fn generate_batch_proof(
		&self,
		leaf_indices: Vec<LeafIndex>,
		at: Option<<Block as BlockT>::Hash>,
	) -> RpcResult<LeafBatchProof<<Block as BlockT>::Hash>> {
		let api = self.client.runtime_api();
		let block_hash = at.unwrap_or_else(||
			// If the block hash is not supplied assume the best block.
			self.client.info().best_hash);

		let (leaves, proof) = api
			.generate_batch_proof_with_context(
				&BlockId::hash(block_hash),
				sp_core::ExecutionContext::OffchainCall(None),
				leaf_indices,
			)
			.map_err(runtime_error_into_rpc_error)?
			.map_err(mmr_error_into_rpc_error)?;

		Ok(LeafBatchProof::new(block_hash, leaves, proof))
	}
}

/// Converts a mmr-specific error into a [`CallError`].
fn mmr_error_into_rpc_error(err: MmrError) -> CallError {
	let data = format!("{:?}", err);
	match err {
		MmrError::LeafNotFound => CallError::Custom(ErrorObject::owned(
			LEAF_NOT_FOUND_ERROR,
			"Leaf was not found",
			Some(data),
		)),
		MmrError::GenerateProof => CallError::Custom(ErrorObject::owned(
			GENERATE_PROOF_ERROR,
			"Error while generating the proof",
			Some(data),
		)),
		_ => CallError::Custom(ErrorObject::owned(MMR_ERROR, "Unexpected MMR error", Some(data))),
	}
}

/// Converts a runtime trap into a [`CallError`].
fn runtime_error_into_rpc_error(err: impl std::fmt::Debug) -> CallError {
	CallError::Custom(ErrorObject::owned(
		RUNTIME_ERROR,
		"Runtime trapped",
		Some(format!("{:?}", err)),
	))
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_core::H256;

	#[test]
	fn should_serialize_leaf_proof() {
		// given
		let leaf = vec![1_u8, 2, 3, 4];
		let proof = Proof {
			leaf_index: 1,
			leaf_count: 9,
			items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
		};

		let leaf_proof = LeafProof::new(H256::repeat_byte(0), leaf, proof);

		// when
		let actual = serde_json::to_string(&leaf_proof).unwrap();

		// then
		assert_eq!(
			actual,
			r#"{"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000","leaf":"0x1001020304","proof":"0x010000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"}"#
		);
	}

	#[test]
	fn should_serialize_leaf_batch_proof() {
		// given
		let leaf = vec![1_u8, 2, 3, 4];
		let proof = BatchProof {
			leaf_indices: vec![1],
			leaf_count: 9,
			items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
		};

		let leaf_proof = LeafBatchProof::new(H256::repeat_byte(0), vec![leaf], proof);

		// when
		let actual = serde_json::to_string(&leaf_proof).unwrap();

		// then
		assert_eq!(
			actual,
			r#"{"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000","leaves":"0x041001020304","proof":"0x04010000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"}"#
		);
	}

	#[test]
	fn should_deserialize_leaf_proof() {
		// given
		let expected = LeafProof {
			block_hash: H256::repeat_byte(0),
			leaf: Bytes(vec![1_u8, 2, 3, 4].encode()),
			proof: Bytes(
				Proof {
					leaf_index: 1,
					leaf_count: 9,
					items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
				}
				.encode(),
			),
		};

		// when
		let actual: LeafProof<H256> = serde_json::from_str(r#"{
			"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000",
			"leaf":"0x1001020304",
			"proof":"0x010000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"
		}"#).unwrap();

		// then
		assert_eq!(actual, expected);
	}

	#[test]
	fn should_deserialize_leaf_batch_proof() {
		// given
		let expected = LeafBatchProof {
			block_hash: H256::repeat_byte(0),
			leaves: Bytes(vec![vec![1_u8, 2, 3, 4]].encode()),
			proof: Bytes(
				BatchProof {
					leaf_indices: vec![1],
					leaf_count: 9,
					items: vec![H256::repeat_byte(1), H256::repeat_byte(2)],
				}
				.encode(),
			),
		};

		// when
		let actual: LeafBatchProof<H256> = serde_json::from_str(r#"{
			"blockHash":"0x0000000000000000000000000000000000000000000000000000000000000000",
			"leaves":"0x041001020304",
			"proof":"0x04010000000000000009000000000000000801010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202"
		}"#).unwrap();

		// then
		assert_eq!(actual, expected);
	}
}