1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::{Decode, Error, Input};
const DECODE_MAX_DEPTH_MSG: &str = "Maximum recursion depth reached when decoding";
pub trait DecodeLimit: Sized {
fn decode_with_depth_limit<I: Input>(limit: u32, input: &mut I) -> Result<Self, Error>;
fn decode_all_with_depth_limit(limit: u32, input: &mut &[u8]) -> Result<Self, Error>;
}
struct DepthTrackingInput<'a, I> {
input: &'a mut I,
depth: u32,
max_depth: u32,
}
impl<'a, I: Input> Input for DepthTrackingInput<'a, I> {
fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
self.input.remaining_len()
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
self.input.read(into)
}
fn read_byte(&mut self) -> Result<u8, Error> {
self.input.read_byte()
}
fn descend_ref(&mut self) -> Result<(), Error> {
self.input.descend_ref()?;
self.depth += 1;
if self.depth > self.max_depth {
Err(DECODE_MAX_DEPTH_MSG.into())
} else {
Ok(())
}
}
fn ascend_ref(&mut self) {
self.input.ascend_ref();
self.depth -= 1;
}
}
impl<T: Decode> DecodeLimit for T {
fn decode_all_with_depth_limit(limit: u32, input: &mut &[u8]) -> Result<Self, Error> {
let t = <Self as DecodeLimit>::decode_with_depth_limit(limit, input)?;
if input.is_empty() {
Ok(t)
} else {
Err(crate::decode_all::DECODE_ALL_ERR_MSG.into())
}
}
fn decode_with_depth_limit<I: Input>(limit: u32, input: &mut I) -> Result<Self, Error> {
let mut input = DepthTrackingInput { input, depth: 0, max_depth: limit };
T::decode(&mut input)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Encode;
#[test]
fn decode_limit_works() {
type NestedVec = Vec<Vec<Vec<Vec<u8>>>>;
let nested: NestedVec = vec![vec![vec![vec![1]]]];
let encoded = nested.encode();
let decoded = NestedVec::decode_with_depth_limit(3, &mut encoded.as_slice()).unwrap();
assert_eq!(decoded, nested);
assert!(NestedVec::decode_with_depth_limit(2, &mut encoded.as_slice()).is_err());
}
#[test]
fn decode_limit_advances_input() {
type NestedVec = Vec<Vec<Vec<Vec<u8>>>>;
let nested: NestedVec = vec![vec![vec![vec![1]]]];
let encoded = nested.encode();
let encoded_slice = &mut encoded.as_slice();
let decoded = Vec::<u8>::decode_with_depth_limit(1, encoded_slice).unwrap();
assert_eq!(decoded, vec![4]);
assert!(NestedVec::decode_with_depth_limit(3, encoded_slice).is_err());
}
#[test]
fn decode_all_with_limit_advances_input() {
type NestedVec = Vec<Vec<Vec<Vec<u8>>>>;
let nested: NestedVec = vec![vec![vec![vec![1]]]];
let mut encoded = NestedVec::encode(&nested);
let decoded = NestedVec::decode_all_with_depth_limit(3, &mut encoded.as_slice()).unwrap();
assert_eq!(decoded, nested);
encoded.extend(&[1, 2, 3, 4, 5, 6]);
assert_eq!(
NestedVec::decode_all_with_depth_limit(3, &mut encoded.as_slice())
.unwrap_err()
.to_string(),
"Input buffer has still data left after decoding!",
);
}
}