1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! The provisioner is responsible for assembling a relay chain block
//! from a set of available parachain candidates of its choice.

#![deny(missing_docs, unused_crate_dependencies)]

use bitvec::vec::BitVec;
use futures::{
	channel::oneshot, future::BoxFuture, prelude::*, stream::FuturesUnordered, FutureExt,
};
use futures_timer::Delay;

use polkadot_node_primitives::CandidateVotes;
use polkadot_node_subsystem::{
	jaeger,
	messages::{
		CandidateBackingMessage, ChainApiMessage, DisputeCoordinatorMessage, ProvisionableData,
		ProvisionerInherentData, ProvisionerMessage,
	},
	overseer, ActivatedLeaf, ActiveLeavesUpdate, FromOrchestra, LeafStatus, OverseerSignal,
	PerLeafSpan, SpawnedSubsystem, SubsystemError,
};
use polkadot_node_subsystem_util::{
	request_availability_cores, request_persisted_validation_data, TimeoutExt,
};
use polkadot_primitives::v2::{
	BackedCandidate, BlockNumber, CandidateHash, CandidateReceipt, CoreState, DisputeState,
	DisputeStatement, DisputeStatementSet, Hash, MultiDisputeStatementSet, OccupiedCoreAssumption,
	SessionIndex, SignedAvailabilityBitfield, ValidatorIndex,
};
use std::collections::{BTreeMap, HashMap, HashSet};

mod error;
mod metrics;
mod onchain_disputes;

pub use self::metrics::*;
use error::{Error, FatalResult};

#[cfg(test)]
mod tests;

/// How long to wait before proposing.
const PRE_PROPOSE_TIMEOUT: std::time::Duration = core::time::Duration::from_millis(2000);
/// Some timeout to ensure task won't hang around in the background forever on issues.
const SEND_INHERENT_DATA_TIMEOUT: std::time::Duration = core::time::Duration::from_millis(500);

const LOG_TARGET: &str = "parachain::provisioner";

/// The provisioner subsystem.
pub struct ProvisionerSubsystem {
	metrics: Metrics,
}

impl ProvisionerSubsystem {
	/// Create a new instance of the `ProvisionerSubsystem`.
	pub fn new(metrics: Metrics) -> Self {
		Self { metrics }
	}
}

/// A per-relay-parent state for the provisioning subsystem.
pub struct PerRelayParent {
	leaf: ActivatedLeaf,
	backed_candidates: Vec<CandidateReceipt>,
	signed_bitfields: Vec<SignedAvailabilityBitfield>,
	is_inherent_ready: bool,
	awaiting_inherent: Vec<oneshot::Sender<ProvisionerInherentData>>,
	span: PerLeafSpan,
}

impl PerRelayParent {
	fn new(leaf: ActivatedLeaf) -> Self {
		let span = PerLeafSpan::new(leaf.span.clone(), "provisioner");

		Self {
			leaf,
			backed_candidates: Vec::new(),
			signed_bitfields: Vec::new(),
			is_inherent_ready: false,
			awaiting_inherent: Vec::new(),
			span,
		}
	}
}

type InherentDelays = FuturesUnordered<BoxFuture<'static, Hash>>;

#[overseer::subsystem(Provisioner, error=SubsystemError, prefix=self::overseer)]
impl<Context> ProvisionerSubsystem {
	fn start(self, ctx: Context) -> SpawnedSubsystem {
		let future = async move {
			run(ctx, self.metrics)
				.await
				.map_err(|e| SubsystemError::with_origin("provisioner", e))
		}
		.boxed();

		SpawnedSubsystem { name: "provisioner-subsystem", future }
	}
}

#[overseer::contextbounds(Provisioner, prefix = self::overseer)]
async fn run<Context>(mut ctx: Context, metrics: Metrics) -> FatalResult<()> {
	let mut inherent_delays = InherentDelays::new();
	let mut per_relay_parent = HashMap::new();

	loop {
		let result =
			run_iteration(&mut ctx, &mut per_relay_parent, &mut inherent_delays, &metrics).await;

		match result {
			Ok(()) => break,
			err => crate::error::log_error(err)?,
		}
	}

	Ok(())
}

#[overseer::contextbounds(Provisioner, prefix = self::overseer)]
async fn run_iteration<Context>(
	ctx: &mut Context,
	per_relay_parent: &mut HashMap<Hash, PerRelayParent>,
	inherent_delays: &mut InherentDelays,
	metrics: &Metrics,
) -> Result<(), Error> {
	loop {
		futures::select! {
			from_overseer = ctx.recv().fuse() => {
				match from_overseer? {
					FromOrchestra::Signal(OverseerSignal::ActiveLeaves(update)) =>
						handle_active_leaves_update(update, per_relay_parent, inherent_delays),
					FromOrchestra::Signal(OverseerSignal::BlockFinalized(..)) => {},
					FromOrchestra::Signal(OverseerSignal::Conclude) => return Ok(()),
					FromOrchestra::Communication { msg } => {
						handle_communication(ctx, per_relay_parent, msg, metrics).await?;
					},
				}
			},
			hash = inherent_delays.select_next_some() => {
				if let Some(state) = per_relay_parent.get_mut(&hash) {
					state.is_inherent_ready = true;

					gum::trace!(
						target: LOG_TARGET,
						relay_parent = ?hash,
						"Inherent Data became ready"
					);

					let return_senders = std::mem::take(&mut state.awaiting_inherent);
					if !return_senders.is_empty() {
						send_inherent_data_bg(ctx, &state, return_senders, metrics.clone()).await?;
					}
				}
			}
		}
	}
}

fn handle_active_leaves_update(
	update: ActiveLeavesUpdate,
	per_relay_parent: &mut HashMap<Hash, PerRelayParent>,
	inherent_delays: &mut InherentDelays,
) {
	for deactivated in &update.deactivated {
		per_relay_parent.remove(deactivated);
	}

	for leaf in update.activated {
		let delay_fut = Delay::new(PRE_PROPOSE_TIMEOUT).map(move |_| leaf.hash).boxed();
		per_relay_parent.insert(leaf.hash, PerRelayParent::new(leaf));
		inherent_delays.push(delay_fut);
	}
}

#[overseer::contextbounds(Provisioner, prefix = self::overseer)]
async fn handle_communication<Context>(
	ctx: &mut Context,
	per_relay_parent: &mut HashMap<Hash, PerRelayParent>,
	message: ProvisionerMessage,
	metrics: &Metrics,
) -> Result<(), Error> {
	match message {
		ProvisionerMessage::RequestInherentData(relay_parent, return_sender) => {
			gum::trace!(target: LOG_TARGET, ?relay_parent, "Inherent data got requested.");

			if let Some(state) = per_relay_parent.get_mut(&relay_parent) {
				if state.is_inherent_ready {
					gum::trace!(target: LOG_TARGET, ?relay_parent, "Calling send_inherent_data.");
					send_inherent_data_bg(ctx, &state, vec![return_sender], metrics.clone())
						.await?;
				} else {
					gum::trace!(
						target: LOG_TARGET,
						?relay_parent,
						"Queuing inherent data request (inherent data not yet ready)."
					);
					state.awaiting_inherent.push(return_sender);
				}
			}
		},
		ProvisionerMessage::ProvisionableData(relay_parent, data) => {
			if let Some(state) = per_relay_parent.get_mut(&relay_parent) {
				let span = state.span.child("provisionable-data");
				let _timer = metrics.time_provisionable_data();

				gum::trace!(target: LOG_TARGET, ?relay_parent, "Received provisionable data.");

				note_provisionable_data(state, &span, data);
			}
		},
	}

	Ok(())
}

#[overseer::contextbounds(Provisioner, prefix = self::overseer)]
async fn send_inherent_data_bg<Context>(
	ctx: &mut Context,
	per_relay_parent: &PerRelayParent,
	return_senders: Vec<oneshot::Sender<ProvisionerInherentData>>,
	metrics: Metrics,
) -> Result<(), Error> {
	let leaf = per_relay_parent.leaf.clone();
	let signed_bitfields = per_relay_parent.signed_bitfields.clone();
	let backed_candidates = per_relay_parent.backed_candidates.clone();
	let span = per_relay_parent.span.child("req-inherent-data");

	let mut sender = ctx.sender().clone();

	let bg = async move {
		let _span = span;
		let _timer = metrics.time_request_inherent_data();

		gum::trace!(
			target: LOG_TARGET,
			relay_parent = ?leaf.hash,
			"Sending inherent data in background."
		);

		let send_result = send_inherent_data(
			&leaf,
			&signed_bitfields,
			&backed_candidates,
			return_senders,
			&mut sender,
			&metrics,
		) // Make sure call is not taking forever:
		.timeout(SEND_INHERENT_DATA_TIMEOUT)
		.map(|v| match v {
			Some(r) => r,
			None => Err(Error::SendInherentDataTimeout),
		});

		match send_result.await {
			Err(err) => {
				gum::warn!(target: LOG_TARGET, err = ?err, "failed to assemble or send inherent data");
				metrics.on_inherent_data_request(Err(()));
			},
			Ok(()) => {
				metrics.on_inherent_data_request(Ok(()));
				gum::debug!(
					target: LOG_TARGET,
					signed_bitfield_count = signed_bitfields.len(),
					backed_candidates_count = backed_candidates.len(),
					leaf_hash = ?leaf.hash,
					"inherent data sent successfully"
				);
				metrics.observe_inherent_data_bitfields_count(signed_bitfields.len());
			},
		}
	};

	ctx.spawn("send-inherent-data", bg.boxed())
		.map_err(|_| Error::FailedToSpawnBackgroundTask)?;

	Ok(())
}

fn note_provisionable_data(
	per_relay_parent: &mut PerRelayParent,
	span: &jaeger::Span,
	provisionable_data: ProvisionableData,
) {
	match provisionable_data {
		ProvisionableData::Bitfield(_, signed_bitfield) =>
			per_relay_parent.signed_bitfields.push(signed_bitfield),
		ProvisionableData::BackedCandidate(backed_candidate) => {
			let candidate_hash = backed_candidate.hash();
			gum::trace!(
				target: LOG_TARGET,
				?candidate_hash,
				para = ?backed_candidate.descriptor().para_id,
				"noted backed candidate",
			);
			let _span = span
				.child("provisionable-backed")
				.with_candidate(candidate_hash)
				.with_para_id(backed_candidate.descriptor().para_id);
			per_relay_parent.backed_candidates.push(backed_candidate)
		},
		_ => {},
	}
}

type CoreAvailability = BitVec<u8, bitvec::order::Lsb0>;

/// The provisioner is the subsystem best suited to choosing which specific
/// backed candidates and availability bitfields should be assembled into the
/// block. To engage this functionality, a
/// `ProvisionerMessage::RequestInherentData` is sent; the response is a set of
/// non-conflicting candidates and the appropriate bitfields. Non-conflicting
/// means that there are never two distinct parachain candidates included for
/// the same parachain and that new parachain candidates cannot be included
/// until the previous one either gets declared available or expired.
///
/// The main complication here is going to be around handling
/// occupied-core-assumptions. We might have candidates that are only
/// includable when some bitfields are included. And we might have candidates
/// that are not includable when certain bitfields are included.
///
/// When we're choosing bitfields to include, the rule should be simple:
/// maximize availability. So basically, include all bitfields. And then
/// choose a coherent set of candidates along with that.
async fn send_inherent_data(
	leaf: &ActivatedLeaf,
	bitfields: &[SignedAvailabilityBitfield],
	candidates: &[CandidateReceipt],
	return_senders: Vec<oneshot::Sender<ProvisionerInherentData>>,
	from_job: &mut impl overseer::ProvisionerSenderTrait,
	metrics: &Metrics,
) -> Result<(), Error> {
	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?leaf.hash,
		"Requesting availability cores"
	);
	let availability_cores = request_availability_cores(leaf.hash, from_job)
		.await
		.await
		.map_err(|err| Error::CanceledAvailabilityCores(err))??;

	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?leaf.hash,
		"Selecting disputes"
	);
	let disputes = select_disputes(from_job, metrics, leaf).await?;
	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?leaf.hash,
		"Selected disputes"
	);

	// Only include bitfields on fresh leaves. On chain reversions, we want to make sure that
	// there will be at least one block, which cannot get disputed, so the chain can make progress.
	let bitfields = match leaf.status {
		LeafStatus::Fresh =>
			select_availability_bitfields(&availability_cores, bitfields, &leaf.hash),
		LeafStatus::Stale => Vec::new(),
	};

	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?leaf.hash,
		"Selected bitfields"
	);
	let candidates =
		select_candidates(&availability_cores, &bitfields, candidates, leaf.hash, from_job).await?;

	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?leaf.hash,
		"Selected candidates"
	);

	gum::debug!(
		target: LOG_TARGET,
		availability_cores_len = availability_cores.len(),
		disputes_count = disputes.len(),
		bitfields_count = bitfields.len(),
		candidates_count = candidates.len(),
		leaf_hash = ?leaf.hash,
		"inherent data prepared",
	);

	let inherent_data =
		ProvisionerInherentData { bitfields, backed_candidates: candidates, disputes };

	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?leaf.hash,
		"Sending back inherent data to requesters."
	);

	for return_sender in return_senders {
		return_sender
			.send(inherent_data.clone())
			.map_err(|_data| Error::InherentDataReturnChannel)?;
	}

	Ok(())
}

/// In general, we want to pick all the bitfields. However, we have the following constraints:
///
/// - not more than one per validator
/// - each 1 bit must correspond to an occupied core
///
/// If we have too many, an arbitrary selection policy is fine. For purposes of maximizing availability,
/// we pick the one with the greatest number of 1 bits.
///
/// Note: This does not enforce any sorting precondition on the output; the ordering there will be unrelated
/// to the sorting of the input.
fn select_availability_bitfields(
	cores: &[CoreState],
	bitfields: &[SignedAvailabilityBitfield],
	leaf_hash: &Hash,
) -> Vec<SignedAvailabilityBitfield> {
	let mut selected: BTreeMap<ValidatorIndex, SignedAvailabilityBitfield> = BTreeMap::new();

	gum::debug!(
		target: LOG_TARGET,
		bitfields_count = bitfields.len(),
		?leaf_hash,
		"bitfields count before selection"
	);

	'a: for bitfield in bitfields.iter().cloned() {
		if bitfield.payload().0.len() != cores.len() {
			gum::debug!(target: LOG_TARGET, ?leaf_hash, "dropping bitfield due to length mismatch");
			continue
		}

		let is_better = selected
			.get(&bitfield.validator_index())
			.map_or(true, |b| b.payload().0.count_ones() < bitfield.payload().0.count_ones());

		if !is_better {
			gum::trace!(
				target: LOG_TARGET,
				val_idx = bitfield.validator_index().0,
				?leaf_hash,
				"dropping bitfield due to duplication - the better one is kept"
			);
			continue
		}

		for (idx, _) in cores.iter().enumerate().filter(|v| !v.1.is_occupied()) {
			// Bit is set for an unoccupied core - invalid
			if *bitfield.payload().0.get(idx).as_deref().unwrap_or(&false) {
				gum::debug!(
					target: LOG_TARGET,
					val_idx = bitfield.validator_index().0,
					?leaf_hash,
					"dropping invalid bitfield - bit is set for an unoccupied core"
				);
				continue 'a
			}
		}

		let _ = selected.insert(bitfield.validator_index(), bitfield);
	}

	gum::debug!(
		target: LOG_TARGET,
		?leaf_hash,
		"selected {} of all {} bitfields (each bitfield is from a unique validator)",
		selected.len(),
		bitfields.len()
	);

	selected.into_iter().map(|(_, b)| b).collect()
}

/// Determine which cores are free, and then to the degree possible, pick a candidate appropriate to each free core.
async fn select_candidates(
	availability_cores: &[CoreState],
	bitfields: &[SignedAvailabilityBitfield],
	candidates: &[CandidateReceipt],
	relay_parent: Hash,
	sender: &mut impl overseer::ProvisionerSenderTrait,
) -> Result<Vec<BackedCandidate>, Error> {
	let block_number = get_block_number_under_construction(relay_parent, sender).await?;

	let mut selected_candidates =
		Vec::with_capacity(candidates.len().min(availability_cores.len()));

	gum::debug!(
		target: LOG_TARGET,
		leaf_hash=?relay_parent,
		n_candidates = candidates.len(),
		"Candidate receipts (before selection)",
	);

	for (core_idx, core) in availability_cores.iter().enumerate() {
		let (scheduled_core, assumption) = match core {
			CoreState::Scheduled(scheduled_core) => (scheduled_core, OccupiedCoreAssumption::Free),
			CoreState::Occupied(occupied_core) => {
				if bitfields_indicate_availability(core_idx, bitfields, &occupied_core.availability)
				{
					if let Some(ref scheduled_core) = occupied_core.next_up_on_available {
						(scheduled_core, OccupiedCoreAssumption::Included)
					} else {
						continue
					}
				} else {
					if occupied_core.time_out_at != block_number {
						continue
					}
					if let Some(ref scheduled_core) = occupied_core.next_up_on_time_out {
						(scheduled_core, OccupiedCoreAssumption::TimedOut)
					} else {
						continue
					}
				}
			},
			CoreState::Free => continue,
		};

		let validation_data = match request_persisted_validation_data(
			relay_parent,
			scheduled_core.para_id,
			assumption,
			sender,
		)
		.await
		.await
		.map_err(|err| Error::CanceledPersistedValidationData(err))??
		{
			Some(v) => v,
			None => continue,
		};

		let computed_validation_data_hash = validation_data.hash();

		// we arbitrarily pick the first of the backed candidates which match the appropriate selection criteria
		if let Some(candidate) = candidates.iter().find(|backed_candidate| {
			let descriptor = &backed_candidate.descriptor;
			descriptor.para_id == scheduled_core.para_id &&
				descriptor.persisted_validation_data_hash == computed_validation_data_hash
		}) {
			let candidate_hash = candidate.hash();
			gum::trace!(
				target: LOG_TARGET,
				leaf_hash=?relay_parent,
				?candidate_hash,
				para = ?candidate.descriptor.para_id,
				core = core_idx,
				"Selected candidate receipt",
			);

			selected_candidates.push(candidate_hash);
		}
	}

	// now get the backed candidates corresponding to these candidate receipts
	let (tx, rx) = oneshot::channel();
	sender.send_unbounded_message(CandidateBackingMessage::GetBackedCandidates(
		relay_parent,
		selected_candidates.clone(),
		tx,
	));
	let mut candidates = rx.await.map_err(|err| Error::CanceledBackedCandidates(err))?;

	// `selected_candidates` is generated in ascending order by core index, and `GetBackedCandidates`
	// _should_ preserve that property, but let's just make sure.
	//
	// We can't easily map from `BackedCandidate` to `core_idx`, but we know that every selected candidate
	// maps to either 0 or 1 backed candidate, and the hashes correspond. Therefore, by checking them
	// in order, we can ensure that the backed candidates are also in order.
	let mut backed_idx = 0;
	for selected in selected_candidates {
		if selected ==
			candidates.get(backed_idx).ok_or(Error::BackedCandidateOrderingProblem)?.hash()
		{
			backed_idx += 1;
		}
	}
	if candidates.len() != backed_idx {
		Err(Error::BackedCandidateOrderingProblem)?;
	}

	// keep only one candidate with validation code.
	let mut with_validation_code = false;
	candidates.retain(|c| {
		if c.candidate.commitments.new_validation_code.is_some() {
			if with_validation_code {
				return false
			}

			with_validation_code = true;
		}

		true
	});

	gum::debug!(
		target: LOG_TARGET,
		n_candidates = candidates.len(),
		n_cores = availability_cores.len(),
		?relay_parent,
		"Selected backed candidates",
	);

	Ok(candidates)
}

/// Produces a block number 1 higher than that of the relay parent
/// in the event of an invalid `relay_parent`, returns `Ok(0)`
async fn get_block_number_under_construction(
	relay_parent: Hash,
	sender: &mut impl overseer::ProvisionerSenderTrait,
) -> Result<BlockNumber, Error> {
	let (tx, rx) = oneshot::channel();
	sender.send_message(ChainApiMessage::BlockNumber(relay_parent, tx)).await;

	match rx.await.map_err(|err| Error::CanceledBlockNumber(err))? {
		Ok(Some(n)) => Ok(n + 1),
		Ok(None) => Ok(0),
		Err(err) => Err(err.into()),
	}
}

/// The availability bitfield for a given core is the transpose
/// of a set of signed availability bitfields. It goes like this:
///
/// - construct a transverse slice along `core_idx`
/// - bitwise-or it with the availability slice
/// - count the 1 bits, compare to the total length; true on 2/3+
fn bitfields_indicate_availability(
	core_idx: usize,
	bitfields: &[SignedAvailabilityBitfield],
	availability: &CoreAvailability,
) -> bool {
	let mut availability = availability.clone();
	let availability_len = availability.len();

	for bitfield in bitfields {
		let validator_idx = bitfield.validator_index().0 as usize;
		match availability.get_mut(validator_idx) {
			None => {
				// in principle, this function might return a `Result<bool, Error>` so that we can more clearly express this error condition
				// however, in practice, that would just push off an error-handling routine which would look a whole lot like this one.
				// simpler to just handle the error internally here.
				gum::warn!(
					target: LOG_TARGET,
					validator_idx = %validator_idx,
					availability_len = %availability_len,
					"attempted to set a transverse bit at idx {} which is greater than bitfield size {}",
					validator_idx,
					availability_len,
				);

				return false
			},
			Some(mut bit_mut) => *bit_mut |= bitfield.payload().0[core_idx],
		}
	}

	3 * availability.count_ones() >= 2 * availability.len()
}

#[derive(Debug)]
enum RequestType {
	/// Query recent disputes, could be an excessive amount.
	Recent,
	/// Query the currently active and very recently concluded disputes.
	Active,
}

/// Request open disputes identified by `CandidateHash` and the `SessionIndex`.
async fn request_disputes(
	sender: &mut impl overseer::ProvisionerSenderTrait,
	active_or_recent: RequestType,
) -> Vec<(SessionIndex, CandidateHash)> {
	let (tx, rx) = oneshot::channel();
	let msg = match active_or_recent {
		RequestType::Recent => DisputeCoordinatorMessage::RecentDisputes(tx),
		RequestType::Active => DisputeCoordinatorMessage::ActiveDisputes(tx),
	};
	// Bounded by block production - `ProvisionerMessage::RequestInherentData`.
	sender.send_unbounded_message(msg);

	let recent_disputes = match rx.await {
		Ok(r) => r,
		Err(oneshot::Canceled) => {
			gum::warn!(target: LOG_TARGET, "Unable to gather {:?} disputes", active_or_recent);
			Vec::new()
		},
	};
	recent_disputes
}

/// Request the relevant dispute statements for a set of disputes identified by `CandidateHash` and the `SessionIndex`.
async fn request_votes(
	sender: &mut impl overseer::ProvisionerSenderTrait,
	disputes_to_query: Vec<(SessionIndex, CandidateHash)>,
) -> Vec<(SessionIndex, CandidateHash, CandidateVotes)> {
	// No need to send dummy request, if nothing to request:
	if disputes_to_query.is_empty() {
		gum::trace!(target: LOG_TARGET, "No disputes, nothing to request - returning empty `Vec`.");

		return Vec::new()
	}
	let (tx, rx) = oneshot::channel();
	// Bounded by block production - `ProvisionerMessage::RequestInherentData`.
	sender.send_unbounded_message(DisputeCoordinatorMessage::QueryCandidateVotes(
		disputes_to_query,
		tx,
	));

	match rx.await {
		Ok(v) => v,
		Err(oneshot::Canceled) => {
			gum::warn!(target: LOG_TARGET, "Unable to query candidate votes");
			Vec::new()
		},
	}
}

/// Extend `acc` by `n` random, picks of not-yet-present in `acc` items of `recent` without repetition and additions of recent.
fn extend_by_random_subset_without_repetition(
	acc: &mut Vec<(SessionIndex, CandidateHash)>,
	extension: Vec<(SessionIndex, CandidateHash)>,
	n: usize,
) {
	use rand::Rng;

	let lut = acc.iter().cloned().collect::<HashSet<(SessionIndex, CandidateHash)>>();

	let mut unique_new =
		extension.into_iter().filter(|recent| !lut.contains(recent)).collect::<Vec<_>>();

	// we can simply add all
	if unique_new.len() <= n {
		acc.extend(unique_new)
	} else {
		acc.reserve(n);
		let mut rng = rand::thread_rng();
		for _ in 0..n {
			let idx = rng.gen_range(0..unique_new.len());
			acc.push(unique_new.swap_remove(idx));
		}
	}
	// assure sorting stays candid according to session index
	acc.sort_unstable_by(|a, b| a.0.cmp(&b.0));
}

/// The maximum number of disputes Provisioner will include in the inherent data.
/// Serves as a protection not to flood the Runtime with excessive data.
const MAX_DISPUTES_FORWARDED_TO_RUNTIME: usize = 1_000;

async fn select_disputes(
	sender: &mut impl overseer::ProvisionerSenderTrait,
	metrics: &metrics::Metrics,
	_leaf: &ActivatedLeaf,
) -> Result<MultiDisputeStatementSet, Error> {
	// Helper lambda
	// Gets the active disputes as input and partitions it in seen and unseen disputes by the Runtime
	// Returns as much unseen disputes as possible and optionally some seen disputes up to `MAX_DISPUTES_FORWARDED_TO_RUNTIME` limit.
	let generate_unseen_active_subset =
		|active: Vec<(SessionIndex, CandidateHash)>,
		 onchain: HashMap<(SessionIndex, CandidateHash), DisputeState>|
		 -> Vec<(SessionIndex, CandidateHash)> {
			let (seen_onchain, mut unseen_onchain): (
				Vec<(SessionIndex, CandidateHash)>,
				Vec<(SessionIndex, CandidateHash)>,
			) = active.into_iter().partition(|d| onchain.contains_key(d));

			if unseen_onchain.len() > MAX_DISPUTES_FORWARDED_TO_RUNTIME {
				// Even unseen on-chain don't fit within the limit. Add as many as possible.
				let mut unseen_subset = Vec::with_capacity(MAX_DISPUTES_FORWARDED_TO_RUNTIME);
				extend_by_random_subset_without_repetition(
					&mut unseen_subset,
					unseen_onchain,
					MAX_DISPUTES_FORWARDED_TO_RUNTIME,
				);
				unseen_subset
			} else {
				// Add all unseen onchain disputes and as much of the seen ones as there is space.
				let n_unseen_onchain = unseen_onchain.len();
				extend_by_random_subset_without_repetition(
					&mut unseen_onchain,
					seen_onchain,
					MAX_DISPUTES_FORWARDED_TO_RUNTIME.saturating_sub(n_unseen_onchain),
				);
				unseen_onchain
			}
		};

	// Helper lambda
	// Extends the active disputes with recent ones up to `MAX_DISPUTES_FORWARDED_TO_RUNTIME` limit. Unseen recent disputes are prioritised.
	let generate_active_and_unseen_recent_subset =
		|recent: Vec<(SessionIndex, CandidateHash)>,
		 mut active: Vec<(SessionIndex, CandidateHash)>,
		 onchain: HashMap<(SessionIndex, CandidateHash), DisputeState>|
		 -> Vec<(SessionIndex, CandidateHash)> {
			let mut n_active = active.len();
			// All active disputes can be sent. Fill the rest of the space with recent ones.
			// We assume there is not enough space for all recent disputes. So we prioritise the unseen ones.
			let (seen_onchain, unseen_onchain): (
				Vec<(SessionIndex, CandidateHash)>,
				Vec<(SessionIndex, CandidateHash)>,
			) = recent.into_iter().partition(|d| onchain.contains_key(d));

			extend_by_random_subset_without_repetition(
				&mut active,
				unseen_onchain,
				MAX_DISPUTES_FORWARDED_TO_RUNTIME.saturating_sub(n_active),
			);
			n_active = active.len();

			if n_active < MAX_DISPUTES_FORWARDED_TO_RUNTIME {
				// Looks like we can add some of the seen disputes too
				extend_by_random_subset_without_repetition(
					&mut active,
					seen_onchain,
					MAX_DISPUTES_FORWARDED_TO_RUNTIME.saturating_sub(n_active),
				);
			}
			active
		};

	gum::trace!(
		target: LOG_TARGET,
		relay_parent = ?_leaf.hash,
		"Request recent disputes"
	);

	// We use `RecentDisputes` instead of `ActiveDisputes` because redundancy is fine.
	// It's heavier than `ActiveDisputes` but ensures that everything from the dispute
	// window gets on-chain, unlike `ActiveDisputes`.
	// In case of an overload condition, we limit ourselves to active disputes, and fill up to the
	// upper bound of disputes to pass to wasm `fn create_inherent_data`.
	// If the active ones are already exceeding the bounds, randomly select a subset.
	let recent = request_disputes(sender, RequestType::Recent).await;

	gum::trace!(
		target: LOG_TARGET,
		relay_paent = ?_leaf.hash,
		"Received recent disputes"
	);

	gum::trace!(
		target: LOG_TARGET,
		relay_paent = ?_leaf.hash,
		"Request on chain disputes"
	);

	// On chain disputes are fetched from the runtime. We want to prioritise the inclusion of unknown
	// disputes in the inherent data. The call relies on staging Runtime API. If the staging API is not
	// enabled in the binary an empty set is generated which doesn't affect the rest of the logic.
	let onchain = match onchain_disputes::get_onchain_disputes(sender, _leaf.hash.clone()).await {
		Ok(r) => r,
		Err(e) => {
			gum::debug!(
				target: LOG_TARGET,
				?e,
				"Can't fetch onchain disputes. Will continue with empty onchain disputes set.",
			);
			HashMap::new()
		},
	};

	gum::trace!(
		target: LOG_TARGET,
		relay_paent = ?_leaf.hash,
		"Received on chain disputes"
	);

	gum::trace!(
		target: LOG_TARGET,
		relay_paent = ?_leaf.hash,
		"Filtering disputes"
	);

	let disputes = if recent.len() > MAX_DISPUTES_FORWARDED_TO_RUNTIME {
		gum::warn!(
			target: LOG_TARGET,
			"Recent disputes are excessive ({} > {}), reduce to active ones, and selected",
			recent.len(),
			MAX_DISPUTES_FORWARDED_TO_RUNTIME
		);
		let active = request_disputes(sender, RequestType::Active).await;
		if active.len() > MAX_DISPUTES_FORWARDED_TO_RUNTIME {
			generate_unseen_active_subset(active, onchain)
		} else {
			generate_active_and_unseen_recent_subset(recent, active, onchain)
		}
	} else {
		recent
	};

	gum::trace!(
		target: LOG_TARGET,
		relay_paent = ?_leaf.hash,
		"Calling `request_votes`"
	);

	// Load all votes for all disputes from the coordinator.
	let dispute_candidate_votes = request_votes(sender, disputes).await;

	gum::trace!(
		target: LOG_TARGET,
		relay_paent = ?_leaf.hash,
		"Finished `request_votes`"
	);

	// Transform all `CandidateVotes` into `MultiDisputeStatementSet`.
	Ok(dispute_candidate_votes
		.into_iter()
		.map(|(session_index, candidate_hash, votes)| {
			let valid_statements = votes
				.valid
				.into_iter()
				.map(|(i, (s, sig))| (DisputeStatement::Valid(s), i, sig));

			let invalid_statements = votes
				.invalid
				.into_iter()
				.map(|(i, (s, sig))| (DisputeStatement::Invalid(s), i, sig));

			metrics.inc_valid_statements_by(valid_statements.len());
			metrics.inc_invalid_statements_by(invalid_statements.len());
			metrics.inc_dispute_statement_sets_by(1);

			DisputeStatementSet {
				candidate_hash,
				session: session_index,
				statements: valid_statements.chain(invalid_statements).collect(),
			}
		})
		.collect())
}