1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Utility module for subsystems
//!
//! Many subsystems have common interests such as canceling a bunch of spawned jobs,
//! or determining what their validator ID is. These common interests are factored into
//! this module.
//!
//! This crate also reexports Prometheus metric types which are expected to be implemented by subsystems.

#![warn(missing_docs)]

use polkadot_node_subsystem::{
	errors::{RuntimeApiError, SubsystemError},
	messages::{RuntimeApiMessage, RuntimeApiRequest, RuntimeApiSender},
	overseer, SubsystemSender,
};

pub use overseer::{
	gen::{OrchestraError as OverseerError, Timeout},
	Subsystem, TimeoutExt,
};

pub use polkadot_node_metrics::{metrics, Metronome};

use futures::channel::{mpsc, oneshot};
use parity_scale_codec::Encode;

use polkadot_primitives::v2::{
	AuthorityDiscoveryId, CandidateEvent, CommittedCandidateReceipt, CoreState, EncodeAs,
	GroupIndex, GroupRotationInfo, Hash, Id as ParaId, OccupiedCoreAssumption,
	PersistedValidationData, ScrapedOnChainVotes, SessionIndex, SessionInfo, Signed,
	SigningContext, ValidationCode, ValidationCodeHash, ValidatorId, ValidatorIndex,
	ValidatorSignature,
};
pub use rand;
use sp_application_crypto::AppKey;
use sp_core::ByteArray;
use sp_keystore::{CryptoStore, Error as KeystoreError, SyncCryptoStorePtr};
use std::time::Duration;
use thiserror::Error;

pub use metered;
pub use polkadot_node_network_protocol::MIN_GOSSIP_PEERS;

pub use determine_new_blocks::determine_new_blocks;

/// These reexports are required so that external crates can use the `delegated_subsystem` macro properly.
pub mod reexports {
	pub use polkadot_overseer::gen::{SpawnedSubsystem, Spawner, Subsystem, SubsystemContext};
}

/// A rolling session window cache.
pub mod rolling_session_window;
/// Convenient and efficient runtime info access.
pub mod runtime;

/// Database trait for subsystem.
pub mod database;

mod determine_new_blocks;

#[cfg(test)]
mod tests;

/// Duration a job will wait after sending a stop signal before hard-aborting.
pub const JOB_GRACEFUL_STOP_DURATION: Duration = Duration::from_secs(1);
/// Capacity of channels to and from individual jobs
pub const JOB_CHANNEL_CAPACITY: usize = 64;

/// Utility errors
#[derive(Debug, Error)]
pub enum Error {
	/// Attempted to send or receive on a oneshot channel which had been canceled
	#[error(transparent)]
	Oneshot(#[from] oneshot::Canceled),
	/// Attempted to send on a MPSC channel which has been canceled
	#[error(transparent)]
	Mpsc(#[from] mpsc::SendError),
	/// A subsystem error
	#[error(transparent)]
	Subsystem(#[from] SubsystemError),
	/// An error in the Runtime API.
	#[error(transparent)]
	RuntimeApi(#[from] RuntimeApiError),
	/// The type system wants this even though it doesn't make sense
	#[error(transparent)]
	Infallible(#[from] std::convert::Infallible),
	/// Attempted to convert from an `AllMessages` to a `FromJob`, and failed.
	#[error("AllMessage not relevant to Job")]
	SenderConversion(String),
	/// The local node is not a validator.
	#[error("Node is not a validator")]
	NotAValidator,
	/// Already forwarding errors to another sender
	#[error("AlreadyForwarding")]
	AlreadyForwarding,
}

impl From<OverseerError> for Error {
	fn from(e: OverseerError) -> Self {
		Self::from(SubsystemError::from(e))
	}
}

/// A type alias for Runtime API receivers.
pub type RuntimeApiReceiver<T> = oneshot::Receiver<Result<T, RuntimeApiError>>;

/// Request some data from the `RuntimeApi`.
pub async fn request_from_runtime<RequestBuilder, Response, Sender>(
	parent: Hash,
	sender: &mut Sender,
	request_builder: RequestBuilder,
) -> RuntimeApiReceiver<Response>
where
	RequestBuilder: FnOnce(RuntimeApiSender<Response>) -> RuntimeApiRequest,
	Sender: SubsystemSender<RuntimeApiMessage>,
{
	let (tx, rx) = oneshot::channel();

	sender
		.send_message(RuntimeApiMessage::Request(parent, request_builder(tx)).into())
		.await;

	rx
}

/// Construct specialized request functions for the runtime.
///
/// These would otherwise get pretty repetitive.
macro_rules! specialize_requests {
	// expand return type name for documentation purposes
	(fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;) => {
		specialize_requests!{
			named stringify!($request_variant) ; fn $func_name( $( $param_name : $param_ty ),* ) -> $return_ty ; $request_variant;
		}
	};

	// create a single specialized request function
	(named $doc_name:expr ; fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;) => {
		#[doc = "Request `"]
		#[doc = $doc_name]
		#[doc = "` from the runtime"]
		pub async fn $func_name (
			parent: Hash,
			$(
				$param_name: $param_ty,
			)*
			sender: &mut impl overseer::SubsystemSender<RuntimeApiMessage>,
		) -> RuntimeApiReceiver<$return_ty>
		{
			request_from_runtime(parent, sender, |tx| RuntimeApiRequest::$request_variant(
				$( $param_name, )* tx
			)).await
		}
	};

	// recursive decompose
	(
		fn $func_name:ident( $( $param_name:ident : $param_ty:ty ),* ) -> $return_ty:ty ; $request_variant:ident;
		$(
			fn $t_func_name:ident( $( $t_param_name:ident : $t_param_ty:ty ),* ) -> $t_return_ty:ty ; $t_request_variant:ident;
		)+
	) => {
		specialize_requests!{
			fn $func_name( $( $param_name : $param_ty ),* ) -> $return_ty ; $request_variant ;
		}
		specialize_requests!{
			$(
				fn $t_func_name( $( $t_param_name : $t_param_ty ),* ) -> $t_return_ty ; $t_request_variant ;
			)+
		}
	};
}

specialize_requests! {
	fn request_authorities() -> Vec<AuthorityDiscoveryId>; Authorities;
	fn request_validators() -> Vec<ValidatorId>; Validators;
	fn request_validator_groups() -> (Vec<Vec<ValidatorIndex>>, GroupRotationInfo); ValidatorGroups;
	fn request_availability_cores() -> Vec<CoreState>; AvailabilityCores;
	fn request_persisted_validation_data(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<PersistedValidationData>; PersistedValidationData;
	fn request_assumed_validation_data(para_id: ParaId, expected_persisted_validation_data_hash: Hash) -> Option<(PersistedValidationData, ValidationCodeHash)>; AssumedValidationData;
	fn request_session_index_for_child() -> SessionIndex; SessionIndexForChild;
	fn request_validation_code(para_id: ParaId, assumption: OccupiedCoreAssumption) -> Option<ValidationCode>; ValidationCode;
	fn request_validation_code_by_hash(validation_code_hash: ValidationCodeHash) -> Option<ValidationCode>; ValidationCodeByHash;
	fn request_candidate_pending_availability(para_id: ParaId) -> Option<CommittedCandidateReceipt>; CandidatePendingAvailability;
	fn request_candidate_events() -> Vec<CandidateEvent>; CandidateEvents;
	fn request_session_info(index: SessionIndex) -> Option<SessionInfo>; SessionInfo;
	fn request_validation_code_hash(para_id: ParaId, assumption: OccupiedCoreAssumption)
		-> Option<ValidationCodeHash>; ValidationCodeHash;
	fn request_on_chain_votes() -> Option<ScrapedOnChainVotes>; FetchOnChainVotes;
}

/// From the given set of validators, find the first key we can sign with, if any.
pub async fn signing_key(
	validators: &[ValidatorId],
	keystore: &SyncCryptoStorePtr,
) -> Option<ValidatorId> {
	signing_key_and_index(validators, keystore).await.map(|(k, _)| k)
}

/// From the given set of validators, find the first key we can sign with, if any, and return it
/// along with the validator index.
pub async fn signing_key_and_index(
	validators: &[ValidatorId],
	keystore: &SyncCryptoStorePtr,
) -> Option<(ValidatorId, ValidatorIndex)> {
	for (i, v) in validators.iter().enumerate() {
		if CryptoStore::has_keys(&**keystore, &[(v.to_raw_vec(), ValidatorId::ID)]).await {
			return Some((v.clone(), ValidatorIndex(i as _)))
		}
	}
	None
}

/// Sign the given data with the given validator ID.
///
/// Returns `Ok(None)` if the private key that correponds to that validator ID is not found in the
/// given keystore. Returns an error if the key could not be used for signing.
pub async fn sign(
	keystore: &SyncCryptoStorePtr,
	key: &ValidatorId,
	data: &[u8],
) -> Result<Option<ValidatorSignature>, KeystoreError> {
	let signature =
		CryptoStore::sign_with(&**keystore, ValidatorId::ID, &key.into(), &data).await?;

	match signature {
		Some(sig) =>
			Ok(Some(sig.try_into().map_err(|_| KeystoreError::KeyNotSupported(ValidatorId::ID))?)),
		None => Ok(None),
	}
}

/// Find the validator group the given validator index belongs to.
pub fn find_validator_group(
	groups: &[Vec<ValidatorIndex>],
	index: ValidatorIndex,
) -> Option<GroupIndex> {
	groups.iter().enumerate().find_map(|(i, g)| {
		if g.contains(&index) {
			Some(GroupIndex(i as _))
		} else {
			None
		}
	})
}

/// Choose a random subset of `min` elements.
/// But always include `is_priority` elements.
pub fn choose_random_subset<T, F: FnMut(&T) -> bool>(is_priority: F, v: &mut Vec<T>, min: usize) {
	choose_random_subset_with_rng(is_priority, v, &mut rand::thread_rng(), min)
}

/// Choose a random subset of `min` elements using a specific Random Generator `Rng`
/// But always include `is_priority` elements.
pub fn choose_random_subset_with_rng<T, F: FnMut(&T) -> bool, R: rand::Rng>(
	is_priority: F,
	v: &mut Vec<T>,
	rng: &mut R,
	min: usize,
) {
	use rand::seq::SliceRandom as _;

	// partition the elements into priority first
	// the returned index is when non_priority elements start
	let i = itertools::partition(v.iter_mut(), is_priority);

	if i >= min || v.len() <= i {
		v.truncate(i);
		return
	}

	v[i..].shuffle(rng);

	v.truncate(min);
}

/// Returns a `bool` with a probability of `a / b` of being true.
pub fn gen_ratio(a: usize, b: usize) -> bool {
	gen_ratio_rng(a, b, &mut rand::thread_rng())
}

/// Returns a `bool` with a probability of `a / b` of being true.
pub fn gen_ratio_rng<R: rand::Rng>(a: usize, b: usize, rng: &mut R) -> bool {
	rng.gen_ratio(a as u32, b as u32)
}

/// Local validator information
///
/// It can be created if the local node is a validator in the context of a particular
/// relay chain block.
#[derive(Debug)]
pub struct Validator {
	signing_context: SigningContext,
	key: ValidatorId,
	index: ValidatorIndex,
}

impl Validator {
	/// Get a struct representing this node's validator if this node is in fact a validator in the context of the given block.
	pub async fn new<S>(
		parent: Hash,
		keystore: SyncCryptoStorePtr,
		sender: &mut S,
	) -> Result<Self, Error>
	where
		S: SubsystemSender<RuntimeApiMessage>,
	{
		// Note: request_validators and request_session_index_for_child do not and cannot
		// run concurrently: they both have a mutable handle to the same sender.
		// However, each of them returns a oneshot::Receiver, and those are resolved concurrently.
		let (validators, session_index) = futures::try_join!(
			request_validators(parent, sender).await,
			request_session_index_for_child(parent, sender).await,
		)?;

		let signing_context = SigningContext { session_index: session_index?, parent_hash: parent };

		let validators = validators?;

		Self::construct(&validators, signing_context, keystore).await
	}

	/// Construct a validator instance without performing runtime fetches.
	///
	/// This can be useful if external code also needs the same data.
	pub async fn construct(
		validators: &[ValidatorId],
		signing_context: SigningContext,
		keystore: SyncCryptoStorePtr,
	) -> Result<Self, Error> {
		let (key, index) =
			signing_key_and_index(validators, &keystore).await.ok_or(Error::NotAValidator)?;

		Ok(Validator { signing_context, key, index })
	}

	/// Get this validator's id.
	pub fn id(&self) -> ValidatorId {
		self.key.clone()
	}

	/// Get this validator's local index.
	pub fn index(&self) -> ValidatorIndex {
		self.index
	}

	/// Get the current signing context.
	pub fn signing_context(&self) -> &SigningContext {
		&self.signing_context
	}

	/// Sign a payload with this validator
	pub async fn sign<Payload: EncodeAs<RealPayload>, RealPayload: Encode>(
		&self,
		keystore: SyncCryptoStorePtr,
		payload: Payload,
	) -> Result<Option<Signed<Payload, RealPayload>>, KeystoreError> {
		Signed::sign(&keystore, payload, &self.signing_context, self.index, &self.key).await
	}
}