1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

use crate::{
	configuration::{self, HostConfiguration},
	initializer,
};
use frame_support::{pallet_prelude::*, traits::EnsureOrigin};
use frame_system::pallet_prelude::*;
use primitives::v2::{Id as ParaId, UpwardMessage};
use sp_std::{collections::btree_map::BTreeMap, fmt, marker::PhantomData, mem, prelude::*};
use xcm::latest::Outcome;

pub use pallet::*;

/// Maximum value that `config.max_upward_message_size` can be set to
///
/// This is used for benchmarking sanely bounding relevant storate items. It is expected from the `configurations`
/// pallet to check these values before setting.
pub const MAX_UPWARD_MESSAGE_SIZE_BOUND: u32 = 50 * 1024;

#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;

#[cfg(test)]
pub(crate) mod tests;

/// All upward messages coming from parachains will be funneled into an implementation of this trait.
///
/// The message is opaque from the perspective of UMP. The message size can range from 0 to
/// `config.max_upward_message_size`.
///
/// It's up to the implementation of this trait to decide what to do with a message as long as it
/// returns the amount of weight consumed in the process of handling. Ignoring a message is a valid
/// strategy.
///
/// There are no guarantees on how much time it takes for the message sent by a candidate to end up
/// in the sink after the candidate was enacted. That typically depends on the UMP traffic, the sizes
/// of upward messages and the configuration of UMP.
///
/// It is possible that by the time the message is sank the origin parachain was offboarded. It is
/// up to the implementer to check that if it cares.
pub trait UmpSink {
	/// Process an incoming upward message and return the amount of weight it consumed, or `None` if
	/// it did not begin processing a message since it would otherwise exceed `max_weight`.
	///
	/// See the trait docs for more details.
	fn process_upward_message(
		origin: ParaId,
		msg: &[u8],
		max_weight: Weight,
	) -> Result<Weight, (MessageId, Weight)>;
}

/// An implementation of a sink that just swallows the message without consuming any weight. Returns
/// `Some(0)` indicating that no messages existed for it to process.
impl UmpSink for () {
	fn process_upward_message(
		_: ParaId,
		_: &[u8],
		_: Weight,
	) -> Result<Weight, (MessageId, Weight)> {
		Ok(Weight::zero())
	}
}

/// Simple type used to identify messages for the purpose of reporting events. Secure if and only
/// if the message content is unique.
pub type MessageId = [u8; 32];

/// Index used to identify overweight messages.
pub type OverweightIndex = u64;

/// A specific implementation of a `UmpSink` where messages are in the XCM format
/// and will be forwarded to the XCM Executor.
pub struct XcmSink<XcmExecutor, Config>(PhantomData<(XcmExecutor, Config)>);

/// Returns a [`MessageId`] for the given upward message payload.
fn upward_message_id(data: &[u8]) -> MessageId {
	sp_io::hashing::blake2_256(data)
}

impl<XcmExecutor: xcm::latest::ExecuteXcm<C::Call>, C: Config> UmpSink for XcmSink<XcmExecutor, C> {
	fn process_upward_message(
		origin: ParaId,
		mut data: &[u8],
		max_weight: Weight,
	) -> Result<Weight, (MessageId, Weight)> {
		use parity_scale_codec::DecodeLimit;
		use xcm::{
			latest::{Error as XcmError, Junction, Xcm},
			VersionedXcm,
		};

		let id = upward_message_id(&data[..]);
		let maybe_msg_and_weight = VersionedXcm::<C::Call>::decode_all_with_depth_limit(
			xcm::MAX_XCM_DECODE_DEPTH,
			&mut data,
		)
		.map(|xcm| {
			(
				Xcm::<C::Call>::try_from(xcm),
				// NOTE: We are overestimating slightly here.
				// The benchmark is timing this whole function with different message sizes and a NOOP extrinsic to
				// measure the size-dependent weight. But as we use the weight funtion **in** the benchmarked funtion we
				// are taking call and control-flow overhead into account twice.
				<C as Config>::WeightInfo::process_upward_message(data.len() as u32),
			)
		});
		match maybe_msg_and_weight {
			Err(_) => {
				Pallet::<C>::deposit_event(Event::InvalidFormat(id));
				Ok(Weight::zero())
			},
			Ok((Err(()), weight_used)) => {
				Pallet::<C>::deposit_event(Event::UnsupportedVersion(id));
				Ok(weight_used)
			},
			Ok((Ok(xcm_message), weight_used)) => {
				let xcm_junction = Junction::Parachain(origin.into());
				let outcome =
					XcmExecutor::execute_xcm(xcm_junction, xcm_message, max_weight.ref_time());
				match outcome {
					Outcome::Error(XcmError::WeightLimitReached(required)) =>
						Err((id, Weight::from_ref_time(required))),
					outcome => {
						let outcome_weight = Weight::from_ref_time(outcome.weight_used());
						Pallet::<C>::deposit_event(Event::ExecutedUpward(id, outcome));
						Ok(weight_used.saturating_add(outcome_weight))
					},
				}
			},
		}
	}
}

/// An error returned by [`check_upward_messages`] that indicates a violation of one of acceptance
/// criteria rules.
pub enum AcceptanceCheckErr {
	MoreMessagesThanPermitted { sent: u32, permitted: u32 },
	MessageSize { idx: u32, msg_size: u32, max_size: u32 },
	CapacityExceeded { count: u32, limit: u32 },
	TotalSizeExceeded { total_size: u32, limit: u32 },
}

impl fmt::Debug for AcceptanceCheckErr {
	fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
		match *self {
			AcceptanceCheckErr::MoreMessagesThanPermitted { sent, permitted } => write!(
				fmt,
				"more upward messages than permitted by config ({} > {})",
				sent, permitted,
			),
			AcceptanceCheckErr::MessageSize { idx, msg_size, max_size } => write!(
				fmt,
				"upward message idx {} larger than permitted by config ({} > {})",
				idx, msg_size, max_size,
			),
			AcceptanceCheckErr::CapacityExceeded { count, limit } => write!(
				fmt,
				"the ump queue would have more items than permitted by config ({} > {})",
				count, limit,
			),
			AcceptanceCheckErr::TotalSizeExceeded { total_size, limit } => write!(
				fmt,
				"the ump queue would have grown past the max size permitted by config ({} > {})",
				total_size, limit,
			),
		}
	}
}

/// Weight information of this pallet.
pub trait WeightInfo {
	fn service_overweight() -> Weight;
	fn process_upward_message(s: u32) -> Weight;
	fn clean_ump_after_outgoing() -> Weight;
}

/// fallback implementation
pub struct TestWeightInfo;
impl WeightInfo for TestWeightInfo {
	fn service_overweight() -> Weight {
		Weight::MAX
	}

	fn process_upward_message(_msg_size: u32) -> Weight {
		Weight::MAX
	}

	fn clean_ump_after_outgoing() -> Weight {
		Weight::MAX
	}
}

#[frame_support::pallet]
pub mod pallet {
	use super::*;

	#[pallet::pallet]
	#[pallet::generate_store(pub(super) trait Store)]
	#[pallet::without_storage_info]
	pub struct Pallet<T>(_);

	#[pallet::config]
	pub trait Config: frame_system::Config + configuration::Config {
		/// The aggregate event.
		type Event: From<Event> + IsType<<Self as frame_system::Config>::Event>;

		/// A place where all received upward messages are funneled.
		type UmpSink: UmpSink;

		/// The factor by which the weight limit it multiplied for the first UMP message to execute with.
		///
		/// An amount less than 100 keeps more available weight in the queue for messages after the first, and potentially
		/// stalls the queue in doing so. More than 100 will provide additional weight for the first message only.
		///
		/// Generally you'll want this to be a bit more - 150 or 200 would be good values.
		type FirstMessageFactorPercent: Get<u64>;

		/// Origin which is allowed to execute overweight messages.
		type ExecuteOverweightOrigin: EnsureOrigin<Self::Origin>;

		/// Weight information for extrinsics in this pallet.
		type WeightInfo: WeightInfo;
	}

	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event {
		/// Upward message is invalid XCM.
		/// \[ id \]
		InvalidFormat(MessageId),
		/// Upward message is unsupported version of XCM.
		/// \[ id \]
		UnsupportedVersion(MessageId),
		/// Upward message executed with the given outcome.
		/// \[ id, outcome \]
		ExecutedUpward(MessageId, Outcome),
		/// The weight limit for handling upward messages was reached.
		/// \[ id, remaining, required \]
		WeightExhausted(MessageId, Weight, Weight),
		/// Some upward messages have been received and will be processed.
		/// \[ para, count, size \]
		UpwardMessagesReceived(ParaId, u32, u32),
		/// The weight budget was exceeded for an individual upward message.
		///
		/// This message can be later dispatched manually using `service_overweight` dispatchable
		/// using the assigned `overweight_index`.
		///
		/// \[ para, id, overweight_index, required \]
		OverweightEnqueued(ParaId, MessageId, OverweightIndex, Weight),
		/// Upward message from the overweight queue was executed with the given actual weight
		/// used.
		///
		/// \[ overweight_index, used \]
		OverweightServiced(OverweightIndex, Weight),
	}

	#[pallet::error]
	pub enum Error<T> {
		/// The message index given is unknown.
		UnknownMessageIndex,
		/// The amount of weight given is possibly not enough for executing the message.
		WeightOverLimit,
	}

	/// The messages waiting to be handled by the relay-chain originating from a certain parachain.
	///
	/// Note that some upward messages might have been already processed by the inclusion logic. E.g.
	/// channel management messages.
	///
	/// The messages are processed in FIFO order.
	#[pallet::storage]
	pub type RelayDispatchQueues<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, Vec<UpwardMessage>, ValueQuery>;

	/// Size of the dispatch queues. Caches sizes of the queues in `RelayDispatchQueue`.
	///
	/// First item in the tuple is the count of messages and second
	/// is the total length (in bytes) of the message payloads.
	///
	/// Note that this is an auxiliary mapping: it's possible to tell the byte size and the number of
	/// messages only looking at `RelayDispatchQueues`. This mapping is separate to avoid the cost of
	/// loading the whole message queue if only the total size and count are required.
	///
	/// Invariant:
	/// - The set of keys should exactly match the set of keys of `RelayDispatchQueues`.
	// NOTE that this field is used by parachains via merkle storage proofs, therefore changing
	// the format will require migration of parachains.
	#[pallet::storage]
	pub type RelayDispatchQueueSize<T: Config> =
		StorageMap<_, Twox64Concat, ParaId, (u32, u32), ValueQuery>;

	/// The ordered list of `ParaId`s that have a `RelayDispatchQueue` entry.
	///
	/// Invariant:
	/// - The set of items from this vector should be exactly the set of the keys in
	///   `RelayDispatchQueues` and `RelayDispatchQueueSize`.
	#[pallet::storage]
	pub type NeedsDispatch<T: Config> = StorageValue<_, Vec<ParaId>, ValueQuery>;

	/// This is the para that gets will get dispatched first during the next upward dispatchable queue
	/// execution round.
	///
	/// Invariant:
	/// - If `Some(para)`, then `para` must be present in `NeedsDispatch`.
	#[pallet::storage]
	pub type NextDispatchRoundStartWith<T: Config> = StorageValue<_, ParaId>;

	/// The messages that exceeded max individual message weight budget.
	///
	/// These messages stay there until manually dispatched.
	#[pallet::storage]
	pub type Overweight<T: Config> =
		StorageMap<_, Twox64Concat, OverweightIndex, (ParaId, Vec<u8>), OptionQuery>;

	/// The number of overweight messages ever recorded in `Overweight` (and thus the lowest free
	/// index).
	#[pallet::storage]
	pub type OverweightCount<T: Config> = StorageValue<_, OverweightIndex, ValueQuery>;

	#[pallet::call]
	impl<T: Config> Pallet<T> {
		/// Service a single overweight upward message.
		///
		/// - `origin`: Must pass `ExecuteOverweightOrigin`.
		/// - `index`: The index of the overweight message to service.
		/// - `weight_limit`: The amount of weight that message execution may take.
		///
		/// Errors:
		/// - `UnknownMessageIndex`: Message of `index` is unknown.
		/// - `WeightOverLimit`: Message execution may use greater than `weight_limit`.
		///
		/// Events:
		/// - `OverweightServiced`: On success.
		#[pallet::weight(weight_limit.saturating_add(<T as Config>::WeightInfo::service_overweight()))]
		pub fn service_overweight(
			origin: OriginFor<T>,
			index: OverweightIndex,
			weight_limit: Weight,
		) -> DispatchResultWithPostInfo {
			T::ExecuteOverweightOrigin::ensure_origin(origin)?;

			let (sender, data) =
				Overweight::<T>::get(index).ok_or(Error::<T>::UnknownMessageIndex)?;
			let used = T::UmpSink::process_upward_message(sender, &data[..], weight_limit)
				.map_err(|_| Error::<T>::WeightOverLimit)?;
			Overweight::<T>::remove(index);
			Self::deposit_event(Event::OverweightServiced(index, used));
			Ok(Some(used.saturating_add(<T as Config>::WeightInfo::service_overweight())).into())
		}
	}
}

/// Routines related to the upward message passing.
impl<T: Config> Pallet<T> {
	/// Block initialization logic, called by initializer.
	pub(crate) fn initializer_initialize(_now: T::BlockNumber) -> Weight {
		Weight::zero()
	}

	/// Block finalization logic, called by initializer.
	pub(crate) fn initializer_finalize() {}

	/// Called by the initializer to note that a new session has started.
	pub(crate) fn initializer_on_new_session(
		_notification: &initializer::SessionChangeNotification<T::BlockNumber>,
		outgoing_paras: &[ParaId],
	) -> Weight {
		Self::perform_outgoing_para_cleanup(outgoing_paras)
	}

	/// Iterate over all paras that were noted for offboarding and remove all the data
	/// associated with them.
	fn perform_outgoing_para_cleanup(outgoing: &[ParaId]) -> Weight {
		let mut weight: Weight = Weight::zero();
		for outgoing_para in outgoing {
			weight = weight.saturating_add(Self::clean_ump_after_outgoing(outgoing_para));
		}
		weight
	}

	/// Remove all relevant storage items for an outgoing parachain.
	pub(crate) fn clean_ump_after_outgoing(outgoing_para: &ParaId) -> Weight {
		<Self as Store>::RelayDispatchQueueSize::remove(outgoing_para);
		<Self as Store>::RelayDispatchQueues::remove(outgoing_para);

		// Remove the outgoing para from the `NeedsDispatch` list and from
		// `NextDispatchRoundStartWith`.
		//
		// That's needed for maintaining invariant that `NextDispatchRoundStartWith` points to an
		// existing item in `NeedsDispatch`.
		<Self as Store>::NeedsDispatch::mutate(|v| {
			if let Ok(i) = v.binary_search(outgoing_para) {
				v.remove(i);
			}
		});
		<Self as Store>::NextDispatchRoundStartWith::mutate(|v| {
			*v = v.filter(|p| p == outgoing_para)
		});

		<T as Config>::WeightInfo::clean_ump_after_outgoing()
	}

	/// Check that all the upward messages sent by a candidate pass the acceptance criteria. Returns
	/// false, if any of the messages doesn't pass.
	pub(crate) fn check_upward_messages(
		config: &HostConfiguration<T::BlockNumber>,
		para: ParaId,
		upward_messages: &[UpwardMessage],
	) -> Result<(), AcceptanceCheckErr> {
		if upward_messages.len() as u32 > config.max_upward_message_num_per_candidate {
			return Err(AcceptanceCheckErr::MoreMessagesThanPermitted {
				sent: upward_messages.len() as u32,
				permitted: config.max_upward_message_num_per_candidate,
			})
		}

		let (mut para_queue_count, mut para_queue_size) =
			<Self as Store>::RelayDispatchQueueSize::get(&para);

		for (idx, msg) in upward_messages.into_iter().enumerate() {
			let msg_size = msg.len() as u32;
			if msg_size > config.max_upward_message_size {
				return Err(AcceptanceCheckErr::MessageSize {
					idx: idx as u32,
					msg_size,
					max_size: config.max_upward_message_size,
				})
			}
			para_queue_count += 1;
			para_queue_size += msg_size;
		}

		// make sure that the queue is not overfilled.
		// we do it here only once since returning false invalidates the whole relay-chain block.
		if para_queue_count > config.max_upward_queue_count {
			return Err(AcceptanceCheckErr::CapacityExceeded {
				count: para_queue_count,
				limit: config.max_upward_queue_count,
			})
		}
		if para_queue_size > config.max_upward_queue_size {
			return Err(AcceptanceCheckErr::TotalSizeExceeded {
				total_size: para_queue_size,
				limit: config.max_upward_queue_size,
			})
		}

		Ok(())
	}

	/// Enqueues `upward_messages` from a `para`'s accepted candidate block.
	pub(crate) fn receive_upward_messages(
		para: ParaId,
		upward_messages: Vec<UpwardMessage>,
	) -> Weight {
		let mut weight = Weight::zero();

		if !upward_messages.is_empty() {
			let (extra_count, extra_size) = upward_messages
				.iter()
				.fold((0, 0), |(cnt, size), d| (cnt + 1, size + d.len() as u32));

			<Self as Store>::RelayDispatchQueues::mutate(&para, |v| {
				v.extend(upward_messages.into_iter())
			});

			<Self as Store>::RelayDispatchQueueSize::mutate(
				&para,
				|(ref mut cnt, ref mut size)| {
					*cnt += extra_count;
					*size += extra_size;
				},
			);

			<Self as Store>::NeedsDispatch::mutate(|v| {
				if let Err(i) = v.binary_search(&para) {
					v.insert(i, para);
				}
			});

			// NOTE: The actual computation is not accounted for. It should be benchmarked.
			weight += T::DbWeight::get().reads_writes(3, 3);

			Self::deposit_event(Event::UpwardMessagesReceived(para, extra_count, extra_size));
		}

		weight
	}

	/// Devote some time into dispatching pending upward messages.
	pub(crate) fn process_pending_upward_messages() -> Weight {
		let mut weight_used = Weight::zero();

		let config = <configuration::Pallet<T>>::config();
		let mut cursor = NeedsDispatchCursor::new::<T>();
		let mut queue_cache = QueueCache::new();

		while let Some(dispatchee) = cursor.peek() {
			if weight_used >= config.ump_service_total_weight {
				// Then check whether we've reached or overshoot the
				// preferred weight for the dispatching stage.
				//
				// if so - bail.
				break
			}
			let max_weight = if weight_used == Weight::zero() {
				// we increase the amount of weight that we're allowed to use on the first message to try to prevent
				// the possibility of blockage of the queue.
				config.ump_service_total_weight * T::FirstMessageFactorPercent::get() / 100
			} else {
				config.ump_service_total_weight - weight_used
			};

			// attempt to process the next message from the queue of the dispatchee; if not beyond
			// our remaining weight limit, then consume it.
			let maybe_next = queue_cache.peek_front::<T>(dispatchee);
			if let Some(upward_message) = maybe_next {
				match T::UmpSink::process_upward_message(dispatchee, upward_message, max_weight) {
					Ok(used) => {
						weight_used += used;
						let _ = queue_cache.consume_front::<T>(dispatchee);
					},
					Err((id, required)) => {
						if required > config.ump_max_individual_weight {
							// overweight - add to overweight queue and continue with message
							// execution consuming the message.
							let upward_message = queue_cache.consume_front::<T>(dispatchee).expect(
								"`consume_front` should return the same msg as `peek_front`;\
								if we get into this branch then `peek_front` returned `Some`;\
								thus `upward_message` cannot be `None`; qed",
							);
							let index = Self::stash_overweight(dispatchee, upward_message);
							Self::deposit_event(Event::OverweightEnqueued(
								dispatchee, id, index, required,
							));
						} else {
							// we process messages in order and don't drop them if we run out of weight,
							// so need to break here without calling `consume_front`.
							Self::deposit_event(Event::WeightExhausted(id, max_weight, required));
							break
						}
					},
				}
			}

			if queue_cache.is_empty::<T>(dispatchee) {
				// the queue is empty now - this para doesn't need attention anymore.
				cursor.remove();
			} else {
				cursor.advance();
			}
		}

		cursor.flush::<T>();
		queue_cache.flush::<T>();

		weight_used
	}

	/// Puts a given upward message into the list of overweight messages allowing it to be executed
	/// later.
	fn stash_overweight(sender: ParaId, upward_message: Vec<u8>) -> OverweightIndex {
		let index = <Self as Store>::OverweightCount::mutate(|count| {
			let index = *count;
			*count += 1;
			index
		});

		<Self as Store>::Overweight::insert(index, (sender, upward_message));
		index
	}
}

/// To avoid constant fetching, deserializing and serialization the queues are cached.
///
/// After an item dequeued from a queue for the first time, the queue is stored in this struct
/// rather than being serialized and persisted.
///
/// This implementation works best when:
///
/// 1. when the queues are shallow
/// 2. the dispatcher makes more than one cycle
///
/// if the queues are deep and there are many we would load and keep the queues for a long time,
/// thus increasing the peak memory consumption of the wasm runtime. Under such conditions persisting
/// queues might play better since it's unlikely that they are going to be requested once more.
///
/// On the other hand, the situation when deep queues exist and it takes more than one dispatcher
/// cycle to traverse the queues is already sub-optimal and better be avoided.
///
/// This struct is not supposed to be dropped but rather to be consumed by [`flush`].
struct QueueCache(BTreeMap<ParaId, QueueCacheEntry>);

struct QueueCacheEntry {
	queue: Vec<UpwardMessage>,
	total_size: u32,
	consumed_count: usize,
	consumed_size: usize,
}

impl QueueCache {
	fn new() -> Self {
		Self(BTreeMap::new())
	}

	fn ensure_cached<T: Config>(&mut self, para: ParaId) -> &mut QueueCacheEntry {
		self.0.entry(para).or_insert_with(|| {
			let queue = RelayDispatchQueues::<T>::get(&para);
			let (_, total_size) = RelayDispatchQueueSize::<T>::get(&para);
			QueueCacheEntry { queue, total_size, consumed_count: 0, consumed_size: 0 }
		})
	}

	/// Returns the message at the front of `para`'s queue, or `None` if the queue is empty.
	///
	/// Does not mutate the queue.
	fn peek_front<T: Config>(&mut self, para: ParaId) -> Option<&UpwardMessage> {
		let entry = self.ensure_cached::<T>(para);
		entry.queue.get(entry.consumed_count)
	}

	/// Attempts to remove one message from the front of `para`'s queue. If the queue is empty, then
	/// does nothing.
	fn consume_front<T: Config>(&mut self, para: ParaId) -> Option<UpwardMessage> {
		let cache_entry = self.ensure_cached::<T>(para);

		match cache_entry.queue.get_mut(cache_entry.consumed_count) {
			Some(msg) => {
				cache_entry.consumed_count += 1;
				cache_entry.consumed_size += msg.len();

				Some(mem::take(msg))
			},
			None => None,
		}
	}

	/// Returns if the queue for the given para is empty.
	///
	/// That is, if this returns `true` then the next call to [`peek_front`] will return `None`.
	///
	/// Does not mutate the queue.
	fn is_empty<T: Config>(&mut self, para: ParaId) -> bool {
		let cache_entry = self.ensure_cached::<T>(para);
		cache_entry.consumed_count >= cache_entry.queue.len()
	}

	/// Flushes the updated queues into the storage.
	fn flush<T: Config>(self) {
		// NOTE we use an explicit method here instead of Drop impl because it has unwanted semantics
		// within runtime. It is dangerous to use because of double-panics and flushing on a panic
		// is not necessary as well.
		for (para, entry) in self.0 {
			if entry.consumed_count >= entry.queue.len() {
				// remove the entries altogether.
				RelayDispatchQueues::<T>::remove(&para);
				RelayDispatchQueueSize::<T>::remove(&para);
			} else if entry.consumed_count > 0 {
				RelayDispatchQueues::<T>::insert(&para, &entry.queue[entry.consumed_count..]);
				let count = (entry.queue.len() - entry.consumed_count) as u32;
				let size = entry.total_size.saturating_sub(entry.consumed_size as u32);
				RelayDispatchQueueSize::<T>::insert(&para, (count, size));
			}
		}
	}
}

/// A cursor that iterates over all entries in `NeedsDispatch`.
///
/// This cursor will start with the para indicated by `NextDispatchRoundStartWith` storage entry.
/// This cursor is cyclic meaning that after reaching the end it will jump to the beginning. Unlike
/// an iterator, this cursor allows removing items during the iteration.
///
/// Each iteration cycle *must be* concluded with a call to either `advance` or `remove`.
///
/// This struct is not supposed to be dropped but rather to be consumed by [`flush`].
#[derive(Debug)]
struct NeedsDispatchCursor {
	needs_dispatch: Vec<ParaId>,
	index: usize,
}

impl NeedsDispatchCursor {
	fn new<T: Config>() -> Self {
		let needs_dispatch: Vec<ParaId> = <Pallet<T> as Store>::NeedsDispatch::get();
		let start_with = <Pallet<T> as Store>::NextDispatchRoundStartWith::get();

		let initial_index = match start_with {
			Some(para) => match needs_dispatch.binary_search(&para) {
				Ok(found_index) => found_index,
				Err(_supposed_index) => {
					// well that's weird because we maintain an invariant that
					// `NextDispatchRoundStartWith` must point into one of the items in
					// `NeedsDispatch`.
					//
					// let's select 0 as the starting index as a safe bet.
					debug_assert!(false);
					0
				},
			},
			None => 0,
		};

		Self { needs_dispatch, index: initial_index }
	}

	/// Returns the item the cursor points to.
	fn peek(&self) -> Option<ParaId> {
		self.needs_dispatch.get(self.index).cloned()
	}

	/// Moves the cursor to the next item.
	fn advance(&mut self) {
		if self.needs_dispatch.is_empty() {
			return
		}
		self.index = (self.index + 1) % self.needs_dispatch.len();
	}

	/// Removes the item under the cursor.
	fn remove(&mut self) {
		if self.needs_dispatch.is_empty() {
			return
		}
		let _ = self.needs_dispatch.remove(self.index);

		// we might've removed the last element and that doesn't necessarily mean that `needs_dispatch`
		// became empty. Reposition the cursor in this case to the beginning.
		if self.needs_dispatch.get(self.index).is_none() {
			self.index = 0;
		}
	}

	/// Flushes the dispatcher state into the persistent storage.
	fn flush<T: Config>(self) {
		let next_one = self.peek();
		<Pallet<T> as Store>::NextDispatchRoundStartWith::set(next_one);
		<Pallet<T> as Store>::NeedsDispatch::put(self.needs_dispatch);
	}
}