1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 * This file was initially derived from the files
 * `js/src/jit/BacktrackingAllocator.h` and
 * `js/src/jit/BacktrackingAllocator.cpp` in Mozilla Firefox, and was
 * originally licensed under the Mozilla Public License 2.0. We
 * subsequently relicensed it to Apache-2.0 WITH LLVM-exception (see
 * https://github.com/bytecodealliance/regalloc2/issues/7).
 *
 * Since the initial port, the design has been substantially evolved
 * and optimized.
 */

//! Spillslot allocation.

use super::{
    AllocRegResult, Env, LiveRangeKey, LiveRangeSet, PReg, PRegIndex, RegClass, RegTraversalIter,
    SpillSetIndex, SpillSlotData, SpillSlotIndex, SpillSlotList,
};
use crate::{Allocation, Function, SpillSlot};
use smallvec::smallvec;

impl<'a, F: Function> Env<'a, F> {
    pub fn try_allocating_regs_for_spilled_bundles(&mut self) {
        trace!("allocating regs for spilled bundles");
        for i in 0..self.spilled_bundles.len() {
            let bundle = self.spilled_bundles[i]; // don't borrow self

            let class = self.spillsets[self.bundles[bundle.index()].spillset.index()].class;
            let hint = self.spillsets[self.bundles[bundle.index()].spillset.index()].reg_hint;

            // This may be an empty-range bundle whose ranges are not
            // sorted; sort all range-lists again here.
            self.bundles[bundle.index()]
                .ranges
                .sort_unstable_by_key(|entry| entry.range.from);

            let mut success = false;
            self.stats.spill_bundle_reg_probes += 1;
            for preg in
                RegTraversalIter::new(self.env, class, hint, PReg::invalid(), bundle.index(), None)
            {
                trace!("trying bundle {:?} to preg {:?}", bundle, preg);
                let preg_idx = PRegIndex::new(preg.index());
                if let AllocRegResult::Allocated(_) =
                    self.try_to_allocate_bundle_to_reg(bundle, preg_idx, None)
                {
                    self.stats.spill_bundle_reg_success += 1;
                    success = true;
                    break;
                }
            }
            if !success {
                trace!(
                    "spilling bundle {:?}: marking spillset {:?} as required",
                    bundle,
                    self.bundles[bundle.index()].spillset
                );
                self.spillsets[self.bundles[bundle.index()].spillset.index()].required = true;
            }
        }
    }

    pub fn spillslot_can_fit_spillset(
        &mut self,
        spillslot: SpillSlotIndex,
        spillset: SpillSetIndex,
    ) -> bool {
        for &vreg in &self.spillsets[spillset.index()].vregs {
            for entry in &self.vregs[vreg.index()].ranges {
                if self.spillslots[spillslot.index()]
                    .ranges
                    .btree
                    .contains_key(&LiveRangeKey::from_range(&entry.range))
                {
                    return false;
                }
            }
        }
        true
    }

    pub fn allocate_spillset_to_spillslot(
        &mut self,
        spillset: SpillSetIndex,
        spillslot: SpillSlotIndex,
    ) {
        self.spillsets[spillset.index()].slot = spillslot;
        for i in 0..self.spillsets[spillset.index()].vregs.len() {
            // don't borrow self
            let vreg = self.spillsets[spillset.index()].vregs[i];
            trace!(
                "spillslot {:?} alloc'ed to spillset {:?}: vreg {:?}",
                spillslot,
                spillset,
                vreg,
            );
            for entry in &self.vregs[vreg.index()].ranges {
                trace!(
                    "spillslot {:?} getting range {:?} from LR {:?} from vreg {:?}",
                    spillslot,
                    entry.range,
                    entry.index,
                    vreg,
                );
                self.spillslots[spillslot.index()]
                    .ranges
                    .btree
                    .insert(LiveRangeKey::from_range(&entry.range), entry.index);
            }
        }
    }

    pub fn allocate_spillslots(&mut self) {
        const MAX_ATTEMPTS: usize = 10;

        for spillset in 0..self.spillsets.len() {
            trace!("allocate spillslot: {}", spillset);
            let spillset = SpillSetIndex::new(spillset);
            if !self.spillsets[spillset.index()].required {
                continue;
            }
            // Get or create the spillslot list for this size.
            let size = self.spillsets[spillset.index()].size as usize;
            if size >= self.slots_by_size.len() {
                self.slots_by_size.resize(
                    size + 1,
                    SpillSlotList {
                        slots: smallvec![],
                        probe_start: 0,
                    },
                );
            }
            // Try a few existing spillslots.
            let mut i = self.slots_by_size[size].probe_start;
            let mut success = false;
            // Never probe the same element more than once: limit the
            // attempt count to the number of slots in existence.
            for _attempt in 0..std::cmp::min(self.slots_by_size[size].slots.len(), MAX_ATTEMPTS) {
                // Note: this indexing of `slots` is always valid
                // because either the `slots` list is empty and the
                // iteration limit above consequently means we don't
                // run this loop at all, or else `probe_start` is
                // in-bounds (because it is made so below when we add
                // a slot, and it always takes on the last index `i`
                // after this loop).
                let spillslot = self.slots_by_size[size].slots[i];

                if self.spillslot_can_fit_spillset(spillslot, spillset) {
                    self.allocate_spillset_to_spillslot(spillset, spillslot);
                    success = true;
                    self.slots_by_size[size].probe_start = i;
                    break;
                }

                i = self.slots_by_size[size].next_index(i);
            }

            if !success {
                // Allocate a new spillslot.
                let spillslot = SpillSlotIndex::new(self.spillslots.len());
                self.spillslots.push(SpillSlotData {
                    ranges: LiveRangeSet::new(),
                    alloc: Allocation::none(),
                    class: self.spillsets[spillset.index()].class,
                });
                self.slots_by_size[size].slots.push(spillslot);
                self.slots_by_size[size].probe_start = self.slots_by_size[size].slots.len() - 1;

                self.allocate_spillset_to_spillslot(spillset, spillslot);
            }
        }

        // Assign actual slot indices to spillslots.
        for i in 0..self.spillslots.len() {
            self.spillslots[i].alloc = self.allocate_spillslot(self.spillslots[i].class);
        }

        trace!("spillslot allocator done");
    }

    pub fn allocate_spillslot(&mut self, class: RegClass) -> Allocation {
        let size = self.func.spillslot_size(class) as u32;
        let mut offset = self.num_spillslots;
        // Align up to `size`.
        debug_assert!(size.is_power_of_two());
        offset = (offset + size - 1) & !(size - 1);
        let slot = if self.func.multi_spillslot_named_by_last_slot() {
            offset + size - 1
        } else {
            offset
        };
        offset += size;
        self.num_spillslots = offset;
        Allocation::stack(SpillSlot::new(slot as usize, class))
    }
}