1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#![deny(missing_docs)]
//! A library for manipulating memory regions
//!
//! This crate provides several functions for handling memory pages and regions.
//! It is implemented using platform specific APIs. The library exposes both low
//! and high level functionality for manipulating pages.
//!
//! Not all OS specific quirks are abstracted away. For instance; some OSs
//! enforce memory pages to be readable whilst other may prevent pages from
//! becoming executable (i.e DEP).
//!
//! *Note: a region is a collection of one or more pages laying consecutively in
//! memory, with the same properties.*
//!
//! # Installation
//!
//! This crate is [on crates.io](https://crates.io/crates/region) and can be
//! used by adding `region` to your dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! region = "2.2.0"
//! ```
//!
//! and this to your crate root:
//!
//! ```rust
//! extern crate region;
//! ```
//!
//! # Examples
//!
//! - Cross-platform equivalents.
//!
//!   ```rust
//!   # unsafe fn example() -> region::Result<()> {
//!   # use region::Protection;
//!   let data = [0xDE, 0xAD, 0xBE, 0xEF];
//!
//!   // Page size
//!   let pz = region::page::size();
//!   let pc = region::page::ceil(1234);
//!   let pf = region::page::floor(1234);
//!
//!   // VirtualQuery | '/proc/self/maps'
//!   let q  = region::query(data.as_ptr())?;
//!   let qr = region::query_range(data.as_ptr(), data.len())?;
//!
//!   // VirtualProtect | mprotect
//!   region::protect(data.as_ptr(), data.len(), Protection::READ_WRITE_EXECUTE)?;
//!
//!   // ... you can also temporarily change a region's protection
//!   let handle = region::protect_with_handle(data.as_ptr(), data.len(), Protection::READ_WRITE_EXECUTE)?;
//!
//!   // VirtualLock | mlock
//!   let guard = region::lock(data.as_ptr(), data.len())?;
//!   # Ok(())
//!   # }
//!   ```

#[macro_use]
extern crate bitflags;
extern crate libc;

pub use error::{Error, Result};
pub use lock::{lock, unlock, LockGuard};
pub use protect::{protect, protect_with_handle, ProtectGuard, Protection};

mod error;
mod lock;
mod os;
pub mod page;
mod protect;

/// A descriptor for a memory region
///
/// This type acts as a POD-type, i.e it has no functionality but merely
/// stores region information.
#[derive(Debug, Clone, Copy)]
pub struct Region {
  /// Base address of the region
  pub base: *const u8,
  /// Whether the region is guarded or not
  pub guarded: bool,
  /// Protection of the region
  pub protection: Protection,
  /// Whether the region is shared or not
  pub shared: bool,
  /// Size of the region (multiple of page size)
  pub size: usize,
}

impl Region {
  /// Returns the region's lower bound.
  pub fn lower(&self) -> usize {
    self.base as usize
  }

  /// Returns the region's upper bound.
  pub fn upper(&self) -> usize {
    self.lower() + self.size
  }
}

unsafe impl Send for Region {}
unsafe impl Sync for Region {}

/// Queries the OS with an address, returning the region it resides within.
///
/// The implementation uses `VirtualQuery` on Windows, `mach_vm_region` on macOS,
/// `kinfo_getvmmap` on FreeBSD, and parses `proc/[pid]/maps` on Linux.
///
/// - The enclosing region can be of multiple page sizes.
/// - The address is rounded down to the closest page boundary.
/// - The address may not be null.
///
/// # Examples
///
/// ```
/// use region::{Protection};
///
/// let data = [0; 100];
/// let region = region::query(data.as_ptr()).unwrap();
///
/// assert_eq!(region.protection, Protection::READ_WRITE);
/// ```
pub fn query(address: *const u8) -> Result<Region> {
  if address.is_null() {
    return Err(Error::NullAddress);
  }

  // The address must be aligned to the closest page boundary
  os::get_region(page::floor(address as usize) as *const u8)
}

/// Queries the OS with a range, returning the regions it contains.
///
/// A 2-byte range straddling a page boundary will return both pages (or one
/// region, if the pages have the same properties). The implementation uses
/// `query` internally.
///
/// - The range is `[address, address + size)`
/// - The address is rounded down to the closest page boundary.
/// - The address may not be null.
/// - The size may not be zero.
///
/// # Examples
///
/// ```
/// let data = [0; 100];
/// let region = region::query_range(data.as_ptr(), data.len()).unwrap();
///
/// assert!(region.len() > 0);
/// ```
pub fn query_range(address: *const u8, size: usize) -> Result<Vec<Region>> {
  if size == 0 {
    return Err(Error::EmptyRange);
  }

  let mut result = Vec::new();
  let mut base = page::floor(address as usize);
  let limit = address as usize + size;

  loop {
    let region = query(base as *const u8)?;
    result.push(region);
    base = region.upper();

    if limit <= region.upper() {
      break;
    }
  }

  Ok(result)
}

#[cfg(test)]
mod tests {
  extern crate memmap;

  use self::memmap::MmapMut;
  use super::*;

  pub fn alloc_pages(prots: &[Protection]) -> MmapMut {
    let pz = page::size();
    let map = MmapMut::map_anon(pz * prots.len()).unwrap();
    let mut base = map.as_ptr();

    for protection in prots {
      unsafe {
        protect(base, pz, *protection).unwrap();
        base = base.offset(pz as isize);
      }
    }

    map
  }

  #[test]
  fn query_null() {
    assert!(query(::std::ptr::null()).is_err());
  }

  #[test]
  fn query_code() {
    let region = query(query_code as *const () as *const u8).unwrap();

    assert_eq!(region.guarded, false);
    assert_eq!(region.shared, cfg!(windows));
  }

  #[test]
  fn query_alloc() {
    let size = page::size() * 2;
    let mut map = alloc_pages(&[Protection::READ_EXECUTE, Protection::READ_EXECUTE]);
    let region = query(map.as_ptr()).unwrap();

    assert_eq!(region.guarded, false);
    assert_eq!(region.protection, Protection::READ_EXECUTE);
    assert!(!region.base.is_null() && region.base <= map.as_mut_ptr());
    assert!(region.size >= size);
  }

  #[test]
  fn query_area_zero() {
    assert!(query_range(&query_area_zero as *const _ as *const u8, 0).is_err());
  }

  #[test]
  fn query_area_overlap() {
    let pz = page::size();
    let prots = [Protection::READ_EXECUTE, Protection::READ_WRITE];
    let map = alloc_pages(&prots);

    // Query an area that overlaps both pages
    let address = unsafe { map.as_ptr().offset(pz as isize - 1) };
    let result = query_range(address, 2).unwrap();

    assert_eq!(result.len(), prots.len());
    for i in 0..prots.len() {
      assert_eq!(result[i].protection, prots[i]);
    }
  }

  #[test]
  fn query_area_alloc() {
    let pz = page::size();
    let prots = [
      Protection::READ,
      Protection::READ_WRITE,
      Protection::READ_EXECUTE,
    ];
    let map = alloc_pages(&prots);

    // Confirm only one page is retrieved
    let result = query_range(map.as_ptr(), pz).unwrap();
    assert_eq!(result.len(), 1);
    assert_eq!(result[0].protection, prots[0]);

    // Retrieve all allocated pages
    let result = query_range(map.as_ptr(), pz * prots.len()).unwrap();
    assert_eq!(result.len(), prots.len());
    assert_eq!(result[1].size, pz);
    for i in 0..prots.len() {
      assert_eq!(result[i].protection, prots[i]);
    }
  }
}