1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use std::collections::VecDeque;

use crate::enums::ProtocolVersion;
use crate::msgs::base::Payload;
use crate::msgs::codec;
use crate::msgs::enums::ContentType;
use crate::msgs::handshake::HandshakeMessagePayload;
use crate::msgs::message::{Message, MessagePayload, PlainMessage};

const HEADER_SIZE: usize = 1 + 3;

/// TLS allows for handshake messages of up to 16MB.  We
/// restrict that to 64KB to limit potential for denial-of-
/// service.
const MAX_HANDSHAKE_SIZE: u32 = 0xffff;

/// This works to reconstruct TLS handshake messages
/// from individual TLS messages.  It's guaranteed that
/// TLS messages output from this layer contain precisely
/// one handshake payload.
pub struct HandshakeJoiner {
    /// Completed handshake frames for output.
    pub frames: VecDeque<Message>,

    /// The message payload we're currently accumulating.
    buf: Vec<u8>,
}

impl Default for HandshakeJoiner {
    fn default() -> Self {
        Self::new()
    }
}

enum BufferState {
    /// Buffer contains a header that introduces a message that is too long.
    MessageTooLarge,

    /// Buffer contains a full header and body.
    OneMessage,

    /// We need more data to see a header and complete body.
    NeedsMoreData,
}

impl HandshakeJoiner {
    /// Make a new HandshakeJoiner.
    pub fn new() -> Self {
        Self {
            frames: VecDeque::new(),
            buf: Vec::new(),
        }
    }

    /// Do we want to process this message?
    pub fn want_message(&self, msg: &PlainMessage) -> bool {
        msg.typ == ContentType::Handshake
    }

    /// Do we have any buffered data?
    pub fn is_empty(&self) -> bool {
        self.buf.is_empty()
    }

    /// Take the message, and join/split it as needed.
    /// Return the number of new messages added to the
    /// output deque as a result of this message.
    ///
    /// Returns None if msg or a preceding message was corrupt.
    /// You cannot recover from this situation.  Otherwise returns
    /// a count of how many messages we queued.
    pub fn take_message(&mut self, msg: PlainMessage) -> Option<usize> {
        // The vast majority of the time `self.buf` will be empty since most
        // handshake messages arrive in a single fragment. Avoid allocating and
        // copying in that common case.
        if self.buf.is_empty() {
            self.buf = msg.payload.0;
        } else {
            self.buf
                .extend_from_slice(&msg.payload.0[..]);
        }

        let mut count = 0;
        loop {
            match self.buf_contains_message() {
                BufferState::MessageTooLarge => return None,
                BufferState::NeedsMoreData => break,
                BufferState::OneMessage => {
                    if !self.deframe_one(msg.version) {
                        return None;
                    }

                    count += 1;
                }
            }
        }

        Some(count)
    }

    /// Does our `buf` contain a full handshake payload?  It does if it is big
    /// enough to contain a header, and that header has a length which falls
    /// within `buf`.
    fn buf_contains_message(&self) -> BufferState {
        if self.buf.len() < HEADER_SIZE {
            return BufferState::NeedsMoreData;
        }

        let (header, rest) = self.buf.split_at(HEADER_SIZE);
        match codec::u24::decode(&header[1..]) {
            Some(len) if len.0 > MAX_HANDSHAKE_SIZE => BufferState::MessageTooLarge,
            Some(len) if rest.get(..len.into()).is_some() => BufferState::OneMessage,
            _ => BufferState::NeedsMoreData,
        }
    }

    /// Take a TLS handshake payload off the front of `buf`, and put it onto
    /// the back of our `frames` deque inside a normal `Message`.
    ///
    /// Returns false if the stream is desynchronised beyond repair.
    fn deframe_one(&mut self, version: ProtocolVersion) -> bool {
        let used = {
            let mut rd = codec::Reader::init(&self.buf);
            let parsed = match HandshakeMessagePayload::read_version(&mut rd, version) {
                Some(p) => p,
                None => return false,
            };

            let m = Message {
                version,
                payload: MessagePayload::Handshake {
                    parsed,
                    encoded: Payload::new(&self.buf[..rd.used()]),
                },
            };

            self.frames.push_back(m);
            rd.used()
        };
        self.buf = self.buf.split_off(used);
        true
    }
}

#[cfg(test)]
mod tests {
    use super::HandshakeJoiner;
    use crate::enums::ProtocolVersion;
    use crate::msgs::base::Payload;
    use crate::msgs::codec::Codec;
    use crate::msgs::enums::{ContentType, HandshakeType};
    use crate::msgs::handshake::{HandshakeMessagePayload, HandshakePayload};
    use crate::msgs::message::{Message, MessagePayload, PlainMessage};

    #[test]
    fn want() {
        let hj = HandshakeJoiner::new();
        assert!(hj.is_empty());

        let wanted = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"hello world".to_vec()),
        };

        let unwanted = PlainMessage {
            typ: ContentType::Alert,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"ponytown".to_vec()),
        };

        assert!(hj.want_message(&wanted));
        assert!(!hj.want_message(&unwanted));
    }

    fn pop_eq(expect: &PlainMessage, hj: &mut HandshakeJoiner) {
        let got = hj.frames.pop_front().unwrap();
        assert_eq!(got.payload.content_type(), expect.typ);
        assert_eq!(got.version, expect.version);

        let (mut left, mut right) = (Vec::new(), Vec::new());
        got.payload.encode(&mut left);
        expect.payload.encode(&mut right);

        assert_eq!(left, right);
    }

    #[test]
    fn split() {
        // Check we split two handshake messages within one PDU.
        let mut hj = HandshakeJoiner::new();

        // two HelloRequests
        let msg = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"\x00\x00\x00\x00\x00\x00\x00\x00".to_vec()),
        };

        assert!(hj.want_message(&msg));
        assert_eq!(hj.take_message(msg), Some(2));
        assert!(hj.is_empty());

        let expect = Message {
            version: ProtocolVersion::TLSv1_2,
            payload: MessagePayload::handshake(HandshakeMessagePayload {
                typ: HandshakeType::HelloRequest,
                payload: HandshakePayload::HelloRequest,
            }),
        }
        .into();

        pop_eq(&expect, &mut hj);
        pop_eq(&expect, &mut hj);
    }

    #[test]
    fn broken() {
        // Check obvious crap payloads are reported as errors, not panics.
        let mut hj = HandshakeJoiner::new();

        // short ClientHello
        let msg = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"\x01\x00\x00\x02\xff\xff".to_vec()),
        };

        assert!(hj.want_message(&msg));
        assert_eq!(hj.take_message(msg), None);
    }

    #[test]
    fn join() {
        // Check we join one handshake message split over two PDUs.
        let mut hj = HandshakeJoiner::new();
        assert!(hj.is_empty());

        // Introduce Finished of 16 bytes, providing 4.
        let mut msg = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"\x14\x00\x00\x10\x00\x01\x02\x03\x04".to_vec()),
        };

        assert!(hj.want_message(&msg));
        assert_eq!(hj.take_message(msg), Some(0));
        assert!(!hj.is_empty());

        // 11 more bytes.
        msg = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e".to_vec()),
        };

        assert!(hj.want_message(&msg));
        assert_eq!(hj.take_message(msg), Some(0));
        assert!(!hj.is_empty());

        // Final 1 byte.
        msg = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"\x0f".to_vec()),
        };

        assert!(hj.want_message(&msg));
        assert_eq!(hj.take_message(msg), Some(1));
        assert!(hj.is_empty());

        let payload = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f".to_vec();
        let expect = Message {
            version: ProtocolVersion::TLSv1_2,
            payload: MessagePayload::handshake(HandshakeMessagePayload {
                typ: HandshakeType::Finished,
                payload: HandshakePayload::Finished(Payload::new(payload)),
            }),
        }
        .into();

        pop_eq(&expect, &mut hj);
    }

    #[test]
    fn test_rejects_giant_certs() {
        let mut hj = HandshakeJoiner::new();
        let msg = PlainMessage {
            typ: ContentType::Handshake,
            version: ProtocolVersion::TLSv1_2,
            payload: Payload::new(b"\x0b\x01\x00\x04\x01\x00\x01\x00\xff\xfe".to_vec()),
        };

        assert!(hj.want_message(&msg));
        assert_eq!(hj.take_message(msg), None);
        assert!(!hj.is_empty());
    }
}