1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
// This file is part of Substrate.

// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Generic utilities for epoch-based consensus engines.

pub mod migration;

use codec::{Decode, Encode};
use fork_tree::{FilterAction, ForkTree};
use sc_client_api::utils::is_descendent_of;
use sp_blockchain::{Error as ClientError, HeaderBackend, HeaderMetadata};
use sp_runtime::traits::{Block as BlockT, NumberFor, One, Zero};
use std::{
	borrow::{Borrow, BorrowMut},
	collections::BTreeMap,
	ops::{Add, Sub},
};

/// A builder for `is_descendent_of` functions.
pub trait IsDescendentOfBuilder<Hash> {
	/// The error returned by the function.
	type Error: std::error::Error;
	/// A function that can tell you if the second parameter is a descendent of
	/// the first.
	type IsDescendentOf: Fn(&Hash, &Hash) -> Result<bool, Self::Error>;

	/// Build an `is_descendent_of` function.
	///
	/// The `current` parameter can be `Some` with the details a fresh block whose
	/// details aren't yet stored, but its parent is.
	///
	/// The format of `current` when `Some` is `(current, current_parent)`.
	fn build_is_descendent_of(&self, current: Option<(Hash, Hash)>) -> Self::IsDescendentOf;
}

/// Produce a descendent query object given the client.
pub fn descendent_query<H, Block>(client: &H) -> HeaderBackendDescendentBuilder<&H, Block> {
	HeaderBackendDescendentBuilder(client, std::marker::PhantomData)
}

/// Wrapper to get around unconstrained type errors when implementing
/// `IsDescendentOfBuilder` for header backends.
pub struct HeaderBackendDescendentBuilder<H, Block>(H, std::marker::PhantomData<Block>);

impl<'a, H, Block> IsDescendentOfBuilder<Block::Hash>
	for HeaderBackendDescendentBuilder<&'a H, Block>
where
	H: HeaderBackend<Block> + HeaderMetadata<Block, Error = ClientError>,
	Block: BlockT,
{
	type Error = ClientError;
	type IsDescendentOf = Box<dyn Fn(&Block::Hash, &Block::Hash) -> Result<bool, ClientError> + 'a>;

	fn build_is_descendent_of(
		&self,
		current: Option<(Block::Hash, Block::Hash)>,
	) -> Self::IsDescendentOf {
		Box::new(is_descendent_of(self.0, current))
	}
}

/// Epoch data, distinguish whether it is genesis or not.
///
/// Once an epoch is created, it must have a known `start_slot` and `end_slot`, which cannot be
/// changed. Consensus engine may modify any other data in the epoch, if needed.
pub trait Epoch: std::fmt::Debug {
	/// Descriptor for the next epoch.
	type NextEpochDescriptor;
	/// Type of the slot number.
	type Slot: Ord + Copy + std::fmt::Debug;

	/// The starting slot of the epoch.
	fn start_slot(&self) -> Self::Slot;
	/// Produce the "end slot" of the epoch. This is NOT inclusive to the epoch,
	/// i.e. the slots covered by the epoch are `self.start_slot() .. self.end_slot()`.
	fn end_slot(&self) -> Self::Slot;
	/// Increment the epoch data, using the next epoch descriptor.
	fn increment(&self, descriptor: Self::NextEpochDescriptor) -> Self;
}

impl<'a, E: Epoch> From<&'a E> for EpochHeader<E> {
	fn from(epoch: &'a E) -> EpochHeader<E> {
		Self { start_slot: epoch.start_slot(), end_slot: epoch.end_slot() }
	}
}

/// Header of epoch data, consisting of start and end slot.
#[derive(Eq, PartialEq, Encode, Decode, Debug)]
pub struct EpochHeader<E: Epoch> {
	/// The starting slot of the epoch.
	pub start_slot: E::Slot,
	/// The end slot of the epoch. This is NOT inclusive to the epoch,
	/// i.e. the slots covered by the epoch are `self.start_slot() .. self.end_slot()`.
	pub end_slot: E::Slot,
}

impl<E: Epoch> Clone for EpochHeader<E> {
	fn clone(&self) -> Self {
		Self { start_slot: self.start_slot, end_slot: self.end_slot }
	}
}

/// Position of the epoch identifier.
#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone, Debug)]
pub enum EpochIdentifierPosition {
	/// The identifier points to a genesis epoch `epoch_0`.
	Genesis0,
	/// The identifier points to a genesis epoch `epoch_1`.
	Genesis1,
	/// The identifier points to a regular epoch.
	Regular,
}

/// Epoch identifier.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug)]
pub struct EpochIdentifier<Hash, Number> {
	/// Location of the epoch.
	pub position: EpochIdentifierPosition,
	/// Hash of the block when the epoch is signaled.
	pub hash: Hash,
	/// Number of the block when the epoch is signaled.
	pub number: Number,
}

/// The viable epoch under which a block can be verified.
///
/// If this is the first non-genesis block in the chain, then it will
/// hold an `UnimportedGenesis` epoch.
pub enum ViableEpoch<E, ERef = E> {
	/// Unimported genesis viable epoch data.
	UnimportedGenesis(E),
	/// Regular viable epoch data.
	Signaled(ERef),
}

impl<E, ERef> AsRef<E> for ViableEpoch<E, ERef>
where
	ERef: Borrow<E>,
{
	fn as_ref(&self) -> &E {
		match *self {
			ViableEpoch::UnimportedGenesis(ref e) => e,
			ViableEpoch::Signaled(ref e) => e.borrow(),
		}
	}
}

impl<E, ERef> AsMut<E> for ViableEpoch<E, ERef>
where
	ERef: BorrowMut<E>,
{
	fn as_mut(&mut self) -> &mut E {
		match *self {
			ViableEpoch::UnimportedGenesis(ref mut e) => e,
			ViableEpoch::Signaled(ref mut e) => e.borrow_mut(),
		}
	}
}

impl<E, ERef> ViableEpoch<E, ERef>
where
	E: Epoch + Clone,
	ERef: Borrow<E>,
{
	/// Extract the underlying epoch, disregarding the fact that a genesis
	/// epoch may be unimported.
	pub fn into_cloned_inner(self) -> E {
		match self {
			ViableEpoch::UnimportedGenesis(e) => e,
			ViableEpoch::Signaled(e) => e.borrow().clone(),
		}
	}

	/// Get cloned value for the viable epoch.
	pub fn into_cloned(self) -> ViableEpoch<E, E> {
		match self {
			ViableEpoch::UnimportedGenesis(e) => ViableEpoch::UnimportedGenesis(e),
			ViableEpoch::Signaled(e) => ViableEpoch::Signaled(e.borrow().clone()),
		}
	}

	/// Increment the epoch, yielding an `IncrementedEpoch` to be imported
	/// into the fork-tree.
	pub fn increment(&self, next_descriptor: E::NextEpochDescriptor) -> IncrementedEpoch<E> {
		let next = self.as_ref().increment(next_descriptor);
		let to_persist = match *self {
			ViableEpoch::UnimportedGenesis(ref epoch_0) =>
				PersistedEpoch::Genesis(epoch_0.clone(), next),
			ViableEpoch::Signaled(_) => PersistedEpoch::Regular(next),
		};

		IncrementedEpoch(to_persist)
	}
}

/// Descriptor for a viable epoch.
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum ViableEpochDescriptor<Hash, Number, E: Epoch> {
	/// The epoch is an unimported genesis, with given start slot number.
	UnimportedGenesis(E::Slot),
	/// The epoch is signaled and has been imported, with given identifier and header.
	Signaled(EpochIdentifier<Hash, Number>, EpochHeader<E>),
}

impl<Hash, Number, E: Epoch> ViableEpochDescriptor<Hash, Number, E> {
	/// Start slot of the descriptor.
	pub fn start_slot(&self) -> E::Slot {
		match self {
			Self::UnimportedGenesis(start_slot) => *start_slot,
			Self::Signaled(_, header) => header.start_slot,
		}
	}
}

/// Persisted epoch stored in EpochChanges.
#[derive(Clone, Encode, Decode, Debug)]
pub enum PersistedEpoch<E> {
	/// Genesis persisted epoch data. epoch_0, epoch_1.
	Genesis(E, E),
	/// Regular persisted epoch data. epoch_n.
	Regular(E),
}

impl<E> PersistedEpoch<E> {
	/// Returns if this is a genesis epoch.
	pub fn is_genesis(&self) -> bool {
		matches!(self, Self::Genesis(_, _))
	}
}

impl<'a, E: Epoch> From<&'a PersistedEpoch<E>> for PersistedEpochHeader<E> {
	fn from(epoch: &'a PersistedEpoch<E>) -> Self {
		match epoch {
			PersistedEpoch::Genesis(ref epoch_0, ref epoch_1) =>
				PersistedEpochHeader::Genesis(epoch_0.into(), epoch_1.into()),
			PersistedEpoch::Regular(ref epoch_n) => PersistedEpochHeader::Regular(epoch_n.into()),
		}
	}
}

impl<E: Epoch> PersistedEpoch<E> {
	/// Map the epoch to a different type using a conversion function.
	pub fn map<B, F, Hash, Number>(self, h: &Hash, n: &Number, f: &mut F) -> PersistedEpoch<B>
	where
		B: Epoch<Slot = E::Slot>,
		F: FnMut(&Hash, &Number, E) -> B,
	{
		match self {
			PersistedEpoch::Genesis(epoch_0, epoch_1) =>
				PersistedEpoch::Genesis(f(h, n, epoch_0), f(h, n, epoch_1)),
			PersistedEpoch::Regular(epoch_n) => PersistedEpoch::Regular(f(h, n, epoch_n)),
		}
	}
}

/// Persisted epoch header stored in ForkTree.
#[derive(Encode, Decode, PartialEq, Eq, Debug)]
pub enum PersistedEpochHeader<E: Epoch> {
	/// Genesis persisted epoch header. epoch_0, epoch_1.
	Genesis(EpochHeader<E>, EpochHeader<E>),
	/// Regular persisted epoch header. epoch_n.
	Regular(EpochHeader<E>),
}

impl<E: Epoch> Clone for PersistedEpochHeader<E> {
	fn clone(&self) -> Self {
		match self {
			Self::Genesis(epoch_0, epoch_1) => Self::Genesis(epoch_0.clone(), epoch_1.clone()),
			Self::Regular(epoch_n) => Self::Regular(epoch_n.clone()),
		}
	}
}

impl<E: Epoch> PersistedEpochHeader<E> {
	/// Map the epoch header to a different type.
	pub fn map<B>(self) -> PersistedEpochHeader<B>
	where
		B: Epoch<Slot = E::Slot>,
	{
		match self {
			PersistedEpochHeader::Genesis(epoch_0, epoch_1) => PersistedEpochHeader::Genesis(
				EpochHeader { start_slot: epoch_0.start_slot, end_slot: epoch_0.end_slot },
				EpochHeader { start_slot: epoch_1.start_slot, end_slot: epoch_1.end_slot },
			),
			PersistedEpochHeader::Regular(epoch_n) => PersistedEpochHeader::Regular(EpochHeader {
				start_slot: epoch_n.start_slot,
				end_slot: epoch_n.end_slot,
			}),
		}
	}
}

/// A fresh, incremented epoch to import into the underlying fork-tree.
///
/// Create this with `ViableEpoch::increment`.
#[must_use = "Freshly-incremented epoch must be imported with `EpochChanges::import`"]
pub struct IncrementedEpoch<E: Epoch>(PersistedEpoch<E>);

impl<E: Epoch> AsRef<E> for IncrementedEpoch<E> {
	fn as_ref(&self) -> &E {
		match self.0 {
			PersistedEpoch::Genesis(_, ref epoch_1) => epoch_1,
			PersistedEpoch::Regular(ref epoch_n) => epoch_n,
		}
	}
}

/// A pair of epochs for the gap block download validation.
/// Block gap is created after the warp sync is complete. Blocks
/// are imported both at the tip of the chain and at the start of the gap.
/// This holds a pair of epochs that are required to validate headers
/// at the start of the gap. Since gap download does not allow forks we don't
/// need to keep a tree of epochs.
#[derive(Clone, Encode, Decode, Debug)]
pub struct GapEpochs<Hash, Number, E: Epoch> {
	current: (Hash, Number, PersistedEpoch<E>),
	next: Option<(Hash, Number, E)>,
}

impl<Hash, Number, E> GapEpochs<Hash, Number, E>
where
	Hash: Copy + PartialEq + std::fmt::Debug,
	Number: Copy + PartialEq + std::fmt::Debug,
	E: Epoch,
{
	/// Check if given slot matches one of the gap epochs.
	/// Returns epoch identifier if it does.
	fn matches(
		&self,
		slot: E::Slot,
	) -> Option<(Hash, Number, EpochHeader<E>, EpochIdentifierPosition)> {
		match &self.current {
			(_, _, PersistedEpoch::Genesis(epoch_0, _))
				if slot >= epoch_0.start_slot() && slot < epoch_0.end_slot() =>
				return Some((
					self.current.0,
					self.current.1,
					epoch_0.into(),
					EpochIdentifierPosition::Genesis0,
				)),
			(_, _, PersistedEpoch::Genesis(_, epoch_1))
				if slot >= epoch_1.start_slot() && slot < epoch_1.end_slot() =>
				return Some((
					self.current.0,
					self.current.1,
					epoch_1.into(),
					EpochIdentifierPosition::Genesis1,
				)),
			(_, _, PersistedEpoch::Regular(epoch_n))
				if slot >= epoch_n.start_slot() && slot < epoch_n.end_slot() =>
				return Some((
					self.current.0,
					self.current.1,
					epoch_n.into(),
					EpochIdentifierPosition::Regular,
				)),
			_ => {},
		};
		match &self.next {
			Some((h, n, epoch_n)) if slot >= epoch_n.start_slot() && slot < epoch_n.end_slot() =>
				Some((*h, *n, epoch_n.into(), EpochIdentifierPosition::Regular)),
			_ => None,
		}
	}

	/// Returns epoch data if it matches given identifier.
	pub fn epoch(&self, id: &EpochIdentifier<Hash, Number>) -> Option<&E> {
		match (&self.current, &self.next) {
			((h, n, e), _) if h == &id.hash && n == &id.number => match e {
				PersistedEpoch::Genesis(ref epoch_0, _)
					if id.position == EpochIdentifierPosition::Genesis0 =>
					Some(epoch_0),
				PersistedEpoch::Genesis(_, ref epoch_1)
					if id.position == EpochIdentifierPosition::Genesis1 =>
					Some(epoch_1),
				PersistedEpoch::Regular(ref epoch_n)
					if id.position == EpochIdentifierPosition::Regular =>
					Some(epoch_n),
				_ => None,
			},
			(_, Some((h, n, e)))
				if h == &id.hash &&
					n == &id.number && id.position == EpochIdentifierPosition::Regular =>
				Some(e),
			_ => None,
		}
	}

	/// Import a new gap epoch, potentially replacing an old epoch.
	fn import(&mut self, slot: E::Slot, hash: Hash, number: Number, epoch: E) -> Result<(), E> {
		match (&mut self.current, &mut self.next) {
			((_, _, PersistedEpoch::Genesis(_, epoch_1)), _) if slot == epoch_1.end_slot() => {
				self.next = Some((hash, number, epoch));
				Ok(())
			},
			(_, Some((_, _, epoch_n))) if slot == epoch_n.end_slot() => {
				let (cur_h, cur_n, cur_epoch) =
					self.next.take().expect("Already matched as `Some`");
				self.current = (cur_h, cur_n, PersistedEpoch::Regular(cur_epoch));
				self.next = Some((hash, number, epoch));
				Ok(())
			},
			_ => Err(epoch),
		}
	}
}

/// Tree of all epoch changes across all *seen* forks. Data stored in tree is
/// the hash and block number of the block signaling the epoch change, and the
/// epoch that was signalled at that block.
///
/// The first epoch, epoch_0, is special cased by saying that it starts at
/// slot number of the first block in the chain. When bootstrapping a chain,
/// there can be multiple competing block #1s, so we have to ensure that the overlayed
/// DAG doesn't get confused.
///
/// The first block of every epoch should be producing a descriptor for the next
/// epoch - this is checked in higher-level code. So the first block of epoch_0 contains
/// a descriptor for epoch_1. We special-case these and bundle them together in the
/// same DAG entry, pinned to a specific block #1.
///
/// Further epochs (epoch_2, ..., epoch_n) each get their own entry.
///
/// Also maintains a pair of epochs for the start of the gap,
/// as long as there's an active gap download after a warp sync.
#[derive(Clone, Encode, Decode, Debug)]
pub struct EpochChanges<Hash, Number, E: Epoch> {
	inner: ForkTree<Hash, Number, PersistedEpochHeader<E>>,
	epochs: BTreeMap<(Hash, Number), PersistedEpoch<E>>,
	gap: Option<GapEpochs<Hash, Number, E>>,
}

// create a fake header hash which hasn't been included in the chain.
fn fake_head_hash<H: AsRef<[u8]> + AsMut<[u8]> + Clone>(parent_hash: &H) -> H {
	let mut h = parent_hash.clone();
	// dirty trick: flip the first bit of the parent hash to create a hash
	// which has not been in the chain before (assuming a strong hash function).
	h.as_mut()[0] ^= 0b10000000;
	h
}

impl<Hash, Number, E: Epoch> Default for EpochChanges<Hash, Number, E>
where
	Hash: PartialEq + Ord,
	Number: Ord,
{
	fn default() -> Self {
		EpochChanges { inner: ForkTree::new(), epochs: BTreeMap::new(), gap: None }
	}
}

impl<Hash, Number, E: Epoch> EpochChanges<Hash, Number, E>
where
	Hash: PartialEq + Ord + AsRef<[u8]> + AsMut<[u8]> + Copy + std::fmt::Debug,
	Number: Ord + One + Zero + Add<Output = Number> + Sub<Output = Number> + Copy + std::fmt::Debug,
{
	/// Create a new epoch change.
	pub fn new() -> Self {
		Self::default()
	}

	/// Rebalances the tree of epoch changes so that it is sorted by length of
	/// fork (longest fork first).
	pub fn rebalance(&mut self) {
		self.inner.rebalance()
	}

	/// Clear gap epochs if any.
	pub fn clear_gap(&mut self) {
		self.gap = None;
	}

	/// Map the epoch changes from one storing data to a different one.
	pub fn map<B, F>(self, mut f: F) -> EpochChanges<Hash, Number, B>
	where
		B: Epoch<Slot = E::Slot>,
		F: FnMut(&Hash, &Number, E) -> B,
	{
		EpochChanges {
			inner: self.inner.map(&mut |_, _, header: PersistedEpochHeader<E>| header.map()),
			gap: self.gap.map(|GapEpochs { current: (h, n, header), next }| GapEpochs {
				current: (h, n, header.map(&h, &n, &mut f)),
				next: next.map(|(h, n, e)| (h, n, f(&h, &n, e))),
			}),
			epochs: self
				.epochs
				.into_iter()
				.map(|((hash, number), epoch)| ((hash, number), epoch.map(&hash, &number, &mut f)))
				.collect(),
		}
	}

	/// Prune out finalized epochs, except for the ancestor of the finalized
	/// block. The given slot should be the slot number at which the finalized
	/// block was authored.
	pub fn prune_finalized<D: IsDescendentOfBuilder<Hash>>(
		&mut self,
		descendent_of_builder: D,
		hash: &Hash,
		number: Number,
		slot: E::Slot,
	) -> Result<(), fork_tree::Error<D::Error>> {
		let is_descendent_of = descendent_of_builder.build_is_descendent_of(None);

		let predicate = |epoch: &PersistedEpochHeader<E>| match *epoch {
			PersistedEpochHeader::Genesis(_, ref epoch_1) => slot >= epoch_1.end_slot,
			PersistedEpochHeader::Regular(ref epoch_n) => slot >= epoch_n.end_slot,
		};

		// prune any epochs which could not be _live_ as of the children of the
		// finalized block, i.e. re-root the fork tree to the oldest ancestor of
		// (hash, number) where epoch.end_slot() >= finalized_slot
		let removed = self.inner.prune(hash, &number, &is_descendent_of, &predicate)?;

		for (hash, number, _) in removed {
			self.epochs.remove(&(hash, number));
		}

		Ok(())
	}

	/// Get a reference to an epoch with given identifier.
	pub fn epoch(&self, id: &EpochIdentifier<Hash, Number>) -> Option<&E> {
		if let Some(e) = &self.gap.as_ref().and_then(|gap| gap.epoch(id)) {
			return Some(e)
		}
		self.epochs.get(&(id.hash, id.number)).and_then(|v| match v {
			PersistedEpoch::Genesis(ref epoch_0, _)
				if id.position == EpochIdentifierPosition::Genesis0 =>
				Some(epoch_0),
			PersistedEpoch::Genesis(_, ref epoch_1)
				if id.position == EpochIdentifierPosition::Genesis1 =>
				Some(epoch_1),
			PersistedEpoch::Regular(ref epoch_n)
				if id.position == EpochIdentifierPosition::Regular =>
				Some(epoch_n),
			_ => None,
		})
	}

	/// Get a reference to a viable epoch with given descriptor.
	pub fn viable_epoch<G>(
		&self,
		descriptor: &ViableEpochDescriptor<Hash, Number, E>,
		make_genesis: G,
	) -> Option<ViableEpoch<E, &E>>
	where
		G: FnOnce(E::Slot) -> E,
	{
		match descriptor {
			ViableEpochDescriptor::UnimportedGenesis(slot) =>
				Some(ViableEpoch::UnimportedGenesis(make_genesis(*slot))),
			ViableEpochDescriptor::Signaled(identifier, _) =>
				self.epoch(identifier).map(ViableEpoch::Signaled),
		}
	}

	/// Get a mutable reference to an epoch with given identifier.
	pub fn epoch_mut(&mut self, id: &EpochIdentifier<Hash, Number>) -> Option<&mut E> {
		self.epochs.get_mut(&(id.hash, id.number)).and_then(|v| match v {
			PersistedEpoch::Genesis(ref mut epoch_0, _)
				if id.position == EpochIdentifierPosition::Genesis0 =>
				Some(epoch_0),
			PersistedEpoch::Genesis(_, ref mut epoch_1)
				if id.position == EpochIdentifierPosition::Genesis1 =>
				Some(epoch_1),
			PersistedEpoch::Regular(ref mut epoch_n)
				if id.position == EpochIdentifierPosition::Regular =>
				Some(epoch_n),
			_ => None,
		})
	}

	/// Get a mutable reference to a viable epoch with given descriptor.
	pub fn viable_epoch_mut<G>(
		&mut self,
		descriptor: &ViableEpochDescriptor<Hash, Number, E>,
		make_genesis: G,
	) -> Option<ViableEpoch<E, &mut E>>
	where
		G: FnOnce(E::Slot) -> E,
	{
		match descriptor {
			ViableEpochDescriptor::UnimportedGenesis(slot) =>
				Some(ViableEpoch::UnimportedGenesis(make_genesis(*slot))),
			ViableEpochDescriptor::Signaled(identifier, _) =>
				self.epoch_mut(identifier).map(ViableEpoch::Signaled),
		}
	}

	/// Get the epoch data from an epoch descriptor.
	///
	/// Note that this function ignores the fact that an genesis epoch might need to be imported.
	/// Mostly useful for testing.
	pub fn epoch_data<G>(
		&self,
		descriptor: &ViableEpochDescriptor<Hash, Number, E>,
		make_genesis: G,
	) -> Option<E>
	where
		G: FnOnce(E::Slot) -> E,
		E: Clone,
	{
		match descriptor {
			ViableEpochDescriptor::UnimportedGenesis(slot) => Some(make_genesis(*slot)),
			ViableEpochDescriptor::Signaled(identifier, _) => self.epoch(identifier).cloned(),
		}
	}

	/// Finds the epoch data for a child of the given block. Similar to
	/// `epoch_descriptor_for_child_of` but returns the full data.
	///
	/// Note that this function ignores the fact that an genesis epoch might need to be imported.
	/// Mostly useful for testing.
	pub fn epoch_data_for_child_of<D: IsDescendentOfBuilder<Hash>, G>(
		&self,
		descendent_of_builder: D,
		parent_hash: &Hash,
		parent_number: Number,
		slot: E::Slot,
		make_genesis: G,
	) -> Result<Option<E>, fork_tree::Error<D::Error>>
	where
		G: FnOnce(E::Slot) -> E,
		E: Clone,
	{
		let descriptor = self.epoch_descriptor_for_child_of(
			descendent_of_builder,
			parent_hash,
			parent_number,
			slot,
		)?;

		Ok(descriptor.and_then(|des| self.epoch_data(&des, make_genesis)))
	}

	/// Finds the epoch for a child of the given block, assuming the given slot number.
	///
	/// If the returned epoch is an `UnimportedGenesis` epoch, it should be imported into the
	/// tree.
	pub fn epoch_descriptor_for_child_of<D: IsDescendentOfBuilder<Hash>>(
		&self,
		descendent_of_builder: D,
		parent_hash: &Hash,
		parent_number: Number,
		slot: E::Slot,
	) -> Result<Option<ViableEpochDescriptor<Hash, Number, E>>, fork_tree::Error<D::Error>> {
		if parent_number == Zero::zero() {
			// need to insert the genesis epoch.
			return Ok(Some(ViableEpochDescriptor::UnimportedGenesis(slot)))
		}

		if let Some(gap) = &self.gap {
			if let Some((hash, number, hdr, position)) = gap.matches(slot) {
				return Ok(Some(ViableEpochDescriptor::Signaled(
					EpochIdentifier { position, hash, number },
					hdr,
				)))
			}
		}

		// find_node_where will give you the node in the fork-tree which is an ancestor
		// of the `parent_hash` by default. if the last epoch was signalled at the parent_hash,
		// then it won't be returned. we need to create a new fake chain head hash which
		// "descends" from our parent-hash.
		let fake_head_hash = fake_head_hash(parent_hash);

		let is_descendent_of =
			descendent_of_builder.build_is_descendent_of(Some((fake_head_hash, *parent_hash)));

		// We want to find the deepest node in the tree which is an ancestor
		// of our block and where the start slot of the epoch was before the
		// slot of our block. The genesis special-case doesn't need to look
		// at epoch_1 -- all we're doing here is figuring out which node
		// we need.
		let predicate = |epoch: &PersistedEpochHeader<E>| match *epoch {
			PersistedEpochHeader::Genesis(ref epoch_0, _) => epoch_0.start_slot <= slot,
			PersistedEpochHeader::Regular(ref epoch_n) => epoch_n.start_slot <= slot,
		};

		self.inner
			.find_node_where(
				&fake_head_hash,
				&(parent_number + One::one()),
				&is_descendent_of,
				&predicate,
			)
			.map(|n| {
				n.map(|node| {
					(
						match node.data {
							// Ok, we found our node.
							// and here we figure out which of the internal epochs
							// of a genesis node to use based on their start slot.
							PersistedEpochHeader::Genesis(ref epoch_0, ref epoch_1) => {
								if epoch_1.start_slot <= slot {
									(EpochIdentifierPosition::Genesis1, epoch_1.clone())
								} else {
									(EpochIdentifierPosition::Genesis0, epoch_0.clone())
								}
							},
							PersistedEpochHeader::Regular(ref epoch_n) =>
								(EpochIdentifierPosition::Regular, epoch_n.clone()),
						},
						node,
					)
				})
				.map(|((position, header), node)| {
					ViableEpochDescriptor::Signaled(
						EpochIdentifier { position, hash: node.hash, number: node.number },
						header,
					)
				})
			})
	}

	/// Import a new epoch-change, signalled at the given block.
	///
	/// This assumes that the given block is prospective (i.e. has not been
	/// imported yet), but its parent has. This is why the parent hash needs
	/// to be provided.
	pub fn import<D: IsDescendentOfBuilder<Hash>>(
		&mut self,
		descendent_of_builder: D,
		hash: Hash,
		number: Number,
		parent_hash: Hash,
		epoch: IncrementedEpoch<E>,
	) -> Result<(), fork_tree::Error<D::Error>> {
		let is_descendent_of =
			descendent_of_builder.build_is_descendent_of(Some((hash, parent_hash)));
		let slot = epoch.as_ref().start_slot();
		let IncrementedEpoch(mut epoch) = epoch;
		let header = PersistedEpochHeader::<E>::from(&epoch);

		if let Some(gap) = &mut self.gap {
			if let PersistedEpoch::Regular(e) = epoch {
				epoch = match gap.import(slot, hash, number, e) {
					Ok(()) => return Ok(()),
					Err(e) => PersistedEpoch::Regular(e),
				}
			}
		} else if epoch.is_genesis() &&
			!self.epochs.is_empty() &&
			!self.epochs.values().any(|e| e.is_genesis())
		{
			// There's a genesis epoch imported when we already have an active epoch.
			// This happens after the warp sync as the ancient blocks download start.
			// We need to start tracking gap epochs here.
			self.gap = Some(GapEpochs { current: (hash, number, epoch), next: None });
			return Ok(())
		}

		let res = self.inner.import(hash, number, header, &is_descendent_of);

		match res {
			Ok(_) | Err(fork_tree::Error::Duplicate) => {
				self.epochs.insert((hash, number), epoch);
				Ok(())
			},
			Err(e) => Err(e),
		}
	}

	/// Return the inner fork tree.
	pub fn tree(&self) -> &ForkTree<Hash, Number, PersistedEpochHeader<E>> {
		&self.inner
	}

	/// Reset to a specified pair of epochs, as if they were announced at blocks `parent_hash` and
	/// `hash`.
	pub fn reset(&mut self, parent_hash: Hash, hash: Hash, number: Number, current: E, next: E) {
		self.inner = ForkTree::new();
		self.epochs.clear();
		let persisted = PersistedEpoch::Regular(current);
		let header = PersistedEpochHeader::from(&persisted);
		let _res = self.inner.import(parent_hash, number - One::one(), header, &|_, _| {
			Ok(false) as Result<bool, fork_tree::Error<ClientError>>
		});
		self.epochs.insert((parent_hash, number - One::one()), persisted);

		let persisted = PersistedEpoch::Regular(next);
		let header = PersistedEpochHeader::from(&persisted);
		let _res = self.inner.import(hash, number, header, &|_, _| {
			Ok(true) as Result<bool, fork_tree::Error<ClientError>>
		});
		self.epochs.insert((hash, number), persisted);
	}

	/// Revert to a specified block given its `hash` and `number`.
	/// This removes all the epoch changes information that were announced by
	/// all the given block descendents.
	pub fn revert<D: IsDescendentOfBuilder<Hash>>(
		&mut self,
		descendent_of_builder: D,
		hash: Hash,
		number: Number,
	) {
		let is_descendent_of = descendent_of_builder.build_is_descendent_of(None);

		let filter = |node_hash: &Hash, node_num: &Number, _: &PersistedEpochHeader<E>| {
			if number >= *node_num &&
				(is_descendent_of(node_hash, &hash).unwrap_or_default() || *node_hash == hash)
			{
				// Continue the search in this subtree.
				FilterAction::KeepNode
			} else if number < *node_num && is_descendent_of(&hash, node_hash).unwrap_or_default() {
				// Found a node to be removed.
				FilterAction::Remove
			} else {
				// Not a parent or child of the one we're looking for, stop processing this branch.
				FilterAction::KeepTree
			}
		};

		self.inner.drain_filter(filter).for_each(|(h, n, _)| {
			self.epochs.remove(&(h, n));
		});
	}
}

/// Type alias to produce the epoch-changes tree from a block type.
pub type EpochChangesFor<Block, Epoch> =
	EpochChanges<<Block as BlockT>::Hash, NumberFor<Block>, Epoch>;

/// A shared epoch changes tree.
pub type SharedEpochChanges<Block, Epoch> =
	sc_consensus::shared_data::SharedData<EpochChangesFor<Block, Epoch>>;

#[cfg(test)]
mod tests {
	use super::{Epoch as EpochT, *};

	#[derive(Debug, PartialEq)]
	pub struct TestError;

	impl std::fmt::Display for TestError {
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			write!(f, "TestError")
		}
	}

	impl std::error::Error for TestError {}

	impl<'a, F: 'a, H: 'a + PartialEq + std::fmt::Debug> IsDescendentOfBuilder<H> for &'a F
	where
		F: Fn(&H, &H) -> Result<bool, TestError>,
	{
		type Error = TestError;
		type IsDescendentOf = Box<dyn Fn(&H, &H) -> Result<bool, TestError> + 'a>;

		fn build_is_descendent_of(&self, current: Option<(H, H)>) -> Self::IsDescendentOf {
			let f = *self;
			Box::new(move |base, head| {
				let mut head = head;

				if let Some((ref c_head, ref c_parent)) = current {
					if head == c_head {
						if base == c_parent {
							return Ok(true)
						} else {
							head = c_parent;
						}
					}
				}

				f(base, head)
			})
		}
	}

	type Hash = [u8; 1];
	type Slot = u64;

	#[derive(Debug, Clone, Eq, PartialEq)]
	struct Epoch {
		start_slot: Slot,
		duration: Slot,
	}

	impl EpochT for Epoch {
		type NextEpochDescriptor = ();
		type Slot = Slot;

		fn increment(&self, _: ()) -> Self {
			Epoch { start_slot: self.start_slot + self.duration, duration: self.duration }
		}

		fn end_slot(&self) -> Slot {
			self.start_slot + self.duration
		}

		fn start_slot(&self) -> Slot {
			self.start_slot
		}
	}

	#[test]
	fn genesis_epoch_is_created_but_not_imported() {
		//
		// A - B
		//  \
		//   — C
		//
		let is_descendent_of = |base: &Hash, block: &Hash| -> Result<bool, TestError> {
			match (base, *block) {
				(b"A", b) => Ok(b == *b"B" || b == *b"C" || b == *b"D"),
				(b"B", b) | (b"C", b) => Ok(b == *b"D"),
				(b"0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		let epoch_changes = EpochChanges::<_, _, Epoch>::new();
		let genesis_epoch = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 10101)
			.unwrap()
			.unwrap();

		match genesis_epoch {
			ViableEpochDescriptor::UnimportedGenesis(slot) => {
				assert_eq!(slot, 10101u64);
			},
			_ => panic!("should be unimported genesis"),
		};

		let genesis_epoch_2 = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 10102)
			.unwrap()
			.unwrap();

		match genesis_epoch_2 {
			ViableEpochDescriptor::UnimportedGenesis(slot) => {
				assert_eq!(slot, 10102u64);
			},
			_ => panic!("should be unimported genesis"),
		};
	}

	#[test]
	fn epoch_changes_between_blocks() {
		//
		// A - B
		//  \
		//   — C
		//
		let is_descendent_of = |base: &Hash, block: &Hash| -> Result<bool, TestError> {
			match (base, *block) {
				(b"A", b) => Ok(b == *b"B" || b == *b"C" || b == *b"D"),
				(b"B", b) | (b"C", b) => Ok(b == *b"D"),
				(b"0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		let make_genesis = |slot| Epoch { start_slot: slot, duration: 100 };

		let mut epoch_changes = EpochChanges::<_, _, Epoch>::new();
		let genesis_epoch = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 100)
			.unwrap()
			.unwrap();

		assert_eq!(genesis_epoch, ViableEpochDescriptor::UnimportedGenesis(100));

		let import_epoch_1 =
			epoch_changes.viable_epoch(&genesis_epoch, &make_genesis).unwrap().increment(());
		let epoch_1 = import_epoch_1.as_ref().clone();

		epoch_changes
			.import(&is_descendent_of, *b"A", 1, *b"0", import_epoch_1)
			.unwrap();
		let genesis_epoch = epoch_changes.epoch_data(&genesis_epoch, &make_genesis).unwrap();

		assert!(is_descendent_of(b"0", b"A").unwrap());

		let end_slot = genesis_epoch.end_slot();
		assert_eq!(end_slot, epoch_1.start_slot);

		{
			// x is still within the genesis epoch.
			let x = epoch_changes
				.epoch_data_for_child_of(&is_descendent_of, b"A", 1, end_slot - 1, &make_genesis)
				.unwrap()
				.unwrap();

			assert_eq!(x, genesis_epoch);
		}

		{
			// x is now at the next epoch, because the block is now at the
			// start slot of epoch 1.
			let x = epoch_changes
				.epoch_data_for_child_of(&is_descendent_of, b"A", 1, end_slot, &make_genesis)
				.unwrap()
				.unwrap();

			assert_eq!(x, epoch_1);
		}

		{
			// x is now at the next epoch, because the block is now after
			// start slot of epoch 1.
			let x = epoch_changes
				.epoch_data_for_child_of(
					&is_descendent_of,
					b"A",
					1,
					epoch_1.end_slot() - 1,
					&make_genesis,
				)
				.unwrap()
				.unwrap();

			assert_eq!(x, epoch_1);
		}
	}

	#[test]
	fn two_block_ones_dont_conflict() {
		//     X - Y
		//   /
		// 0 - A - B
		//
		let is_descendent_of = |base: &Hash, block: &Hash| -> Result<bool, TestError> {
			match (base, *block) {
				(b"A", b) => Ok(b == *b"B"),
				(b"X", b) => Ok(b == *b"Y"),
				(b"0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		let duration = 100;

		let make_genesis = |slot| Epoch { start_slot: slot, duration };

		let mut epoch_changes = EpochChanges::new();
		let next_descriptor = ();

		// insert genesis epoch for A
		{
			let genesis_epoch_a_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 100)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&genesis_epoch_a_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"A", 1, *b"0", incremented_epoch)
				.unwrap();
		}

		// insert genesis epoch for X
		{
			let genesis_epoch_x_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 1000)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&genesis_epoch_x_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"X", 1, *b"0", incremented_epoch)
				.unwrap();
		}

		// now check that the genesis epochs for our respective block 1s
		// respect the chain structure.
		{
			let epoch_for_a_child = epoch_changes
				.epoch_data_for_child_of(&is_descendent_of, b"A", 1, 101, &make_genesis)
				.unwrap()
				.unwrap();

			assert_eq!(epoch_for_a_child, make_genesis(100));

			let epoch_for_x_child = epoch_changes
				.epoch_data_for_child_of(&is_descendent_of, b"X", 1, 1001, &make_genesis)
				.unwrap()
				.unwrap();

			assert_eq!(epoch_for_x_child, make_genesis(1000));

			let epoch_for_x_child_before_genesis = epoch_changes
				.epoch_data_for_child_of(&is_descendent_of, b"X", 1, 101, &make_genesis)
				.unwrap();

			// even though there is a genesis epoch at that slot, it's not in
			// this chain.
			assert!(epoch_for_x_child_before_genesis.is_none());
		}
	}

	/// Test that ensures that the gap is not enabled when we import multiple genesis blocks.
	#[test]
	fn gap_is_not_enabled_when_multiple_genesis_epochs_are_imported() {
		//     X
		//   /
		// 0 - A
		//
		let is_descendent_of = |base: &Hash, block: &Hash| -> Result<bool, TestError> {
			match (base, *block) {
				(b"0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		let duration = 100;

		let make_genesis = |slot| Epoch { start_slot: slot, duration };

		let mut epoch_changes = EpochChanges::new();
		let next_descriptor = ();

		// insert genesis epoch for A
		{
			let genesis_epoch_a_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 100)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&genesis_epoch_a_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"A", 1, *b"0", incremented_epoch)
				.unwrap();
		}

		// insert genesis epoch for X
		{
			let genesis_epoch_x_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 1000)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&genesis_epoch_x_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"X", 1, *b"0", incremented_epoch)
				.unwrap();
		}

		// Clearing the gap should be a no-op.
		epoch_changes.clear_gap();

		// Check that both epochs are available.
		let epoch_a = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"A", 1, 101, &make_genesis)
			.unwrap()
			.unwrap();

		let epoch_x = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"X", 1, 1001, &make_genesis)
			.unwrap()
			.unwrap();

		assert!(epoch_a != epoch_x)
	}

	#[test]
	fn gap_epochs_advance() {
		// 0 - 1 - 2 - 3 - .... 42 - 43
		let is_descendent_of = |base: &Hash, block: &Hash| -> Result<bool, TestError> {
			match (base, *block) {
				(b"0", _) => Ok(true),
				(b"1", b) => Ok(b == *b"0"),
				(b"2", b) => Ok(b == *b"1"),
				(b"3", b) => Ok(b == *b"2"),
				_ => Ok(false),
			}
		};

		let duration = 100;

		let make_genesis = |slot| Epoch { start_slot: slot, duration };

		let mut epoch_changes = EpochChanges::new();
		let next_descriptor = ();

		let epoch42 = Epoch { start_slot: 42, duration: 100 };
		let epoch43 = Epoch { start_slot: 43, duration: 100 };
		epoch_changes.reset(*b"0", *b"1", 4200, epoch42, epoch43);
		assert!(epoch_changes.gap.is_none());

		// Import a new genesis epoch, this should crate the gap.
		let genesis_epoch_a_descriptor = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 100)
			.unwrap()
			.unwrap();

		let incremented_epoch = epoch_changes
			.viable_epoch(&genesis_epoch_a_descriptor, &make_genesis)
			.unwrap()
			.increment(next_descriptor);

		epoch_changes
			.import(&is_descendent_of, *b"1", 1, *b"0", incremented_epoch)
			.unwrap();
		assert!(epoch_changes.gap.is_some());

		let genesis_epoch = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 100)
			.unwrap()
			.unwrap();

		assert_eq!(genesis_epoch, ViableEpochDescriptor::UnimportedGenesis(100));

		// Import more epochs and check that gap advances.
		let import_epoch_1 =
			epoch_changes.viable_epoch(&genesis_epoch, &make_genesis).unwrap().increment(());

		let epoch_1 = import_epoch_1.as_ref().clone();
		epoch_changes
			.import(&is_descendent_of, *b"1", 1, *b"0", import_epoch_1)
			.unwrap();
		let genesis_epoch_data = epoch_changes.epoch_data(&genesis_epoch, &make_genesis).unwrap();
		let end_slot = genesis_epoch_data.end_slot();
		let x = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"1", 1, end_slot, &make_genesis)
			.unwrap()
			.unwrap();

		assert_eq!(x, epoch_1);
		assert_eq!(epoch_changes.gap.as_ref().unwrap().current.0, *b"1");
		assert!(epoch_changes.gap.as_ref().unwrap().next.is_none());

		let epoch_1_desriptor = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"1", 1, end_slot)
			.unwrap()
			.unwrap();
		let epoch_1 = epoch_changes.epoch_data(&epoch_1_desriptor, &make_genesis).unwrap();
		let import_epoch_2 = epoch_changes
			.viable_epoch(&epoch_1_desriptor, &make_genesis)
			.unwrap()
			.increment(());
		let epoch_2 = import_epoch_2.as_ref().clone();
		epoch_changes
			.import(&is_descendent_of, *b"2", 2, *b"1", import_epoch_2)
			.unwrap();

		let end_slot = epoch_1.end_slot();
		let x = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"2", 2, end_slot, &make_genesis)
			.unwrap()
			.unwrap();
		assert_eq!(epoch_changes.gap.as_ref().unwrap().current.0, *b"1");
		assert_eq!(epoch_changes.gap.as_ref().unwrap().next.as_ref().unwrap().0, *b"2");
		assert_eq!(x, epoch_2);

		let epoch_2_desriptor = epoch_changes
			.epoch_descriptor_for_child_of(&is_descendent_of, b"2", 2, end_slot)
			.unwrap()
			.unwrap();
		let import_epoch_3 = epoch_changes
			.viable_epoch(&epoch_2_desriptor, &make_genesis)
			.unwrap()
			.increment(());
		epoch_changes
			.import(&is_descendent_of, *b"3", 3, *b"2", import_epoch_3)
			.unwrap();

		assert_eq!(epoch_changes.gap.as_ref().unwrap().current.0, *b"2");

		epoch_changes.clear_gap();
		assert!(epoch_changes.gap.is_none());
	}

	/// Test that ensures that the gap is not enabled when there's still genesis
	/// epochs imported, regardless of whether there are already other further
	/// epochs imported descending from such genesis epochs.
	#[test]
	fn gap_is_not_enabled_when_at_least_one_genesis_epoch_is_still_imported() {
		//     A (#1) - B (#201)
		//   /
		// 0 - C (#1)
		//
		// The epoch duration is 100 slots, each of these blocks represents
		// an epoch change block. block B starts a new epoch at #201 since the
		// genesis epoch spans two epochs.

		let is_descendent_of = |base: &Hash, block: &Hash| -> Result<bool, TestError> {
			match (base, block) {
				(b"0", _) => Ok(true),
				(b"A", b"B") => Ok(true),
				_ => Ok(false),
			}
		};

		let duration = 100;
		let make_genesis = |slot| Epoch { start_slot: slot, duration };
		let mut epoch_changes = EpochChanges::new();
		let next_descriptor = ();

		// insert genesis epoch for A at slot 1
		{
			let genesis_epoch_a_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 1)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&genesis_epoch_a_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"A", 1, *b"0", incremented_epoch)
				.unwrap();
		}

		// insert regular epoch for B at slot 201, descending from A
		{
			let epoch_b_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"A", 1, 201)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&epoch_b_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"B", 201, *b"A", incremented_epoch)
				.unwrap();
		}

		// insert genesis epoch for C at slot 1000
		{
			let genesis_epoch_x_descriptor = epoch_changes
				.epoch_descriptor_for_child_of(&is_descendent_of, b"0", 0, 1000)
				.unwrap()
				.unwrap();

			let incremented_epoch = epoch_changes
				.viable_epoch(&genesis_epoch_x_descriptor, &make_genesis)
				.unwrap()
				.increment(next_descriptor);

			epoch_changes
				.import(&is_descendent_of, *b"C", 1, *b"0", incremented_epoch)
				.unwrap();
		}

		// Clearing the gap should be a no-op.
		epoch_changes.clear_gap();

		// Check that all three epochs are available.
		let epoch_a = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"A", 1, 10, &make_genesis)
			.unwrap()
			.unwrap();

		let epoch_b = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"B", 201, 201, &make_genesis)
			.unwrap()
			.unwrap();

		assert!(epoch_a != epoch_b);

		// the genesis epoch A will span slots [1, 200] with epoch B starting at slot 201
		assert_eq!(epoch_b.start_slot(), 201);

		let epoch_c = epoch_changes
			.epoch_data_for_child_of(&is_descendent_of, b"C", 1, 1001, &make_genesis)
			.unwrap()
			.unwrap();

		assert!(epoch_a != epoch_c);
	}
}