1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
// This file is part of Substrate.

// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Slots functionality for Substrate.
//!
//! Some consensus algorithms have a concept of *slots*, which are intervals in
//! time during which certain events can and/or must occur.  This crate
//! provides generic functionality for slots.

#![forbid(unsafe_code)]
#![warn(missing_docs)]

mod aux_schema;
mod slots;

pub use aux_schema::{check_equivocation, MAX_SLOT_CAPACITY, PRUNING_BOUND};
pub use slots::SlotInfo;
use slots::Slots;

use futures::{future::Either, Future, TryFutureExt};
use futures_timer::Delay;
use log::{debug, info, warn};
use sc_consensus::{BlockImport, JustificationSyncLink};
use sc_telemetry::{telemetry, TelemetryHandle, CONSENSUS_DEBUG, CONSENSUS_INFO, CONSENSUS_WARN};
use sp_arithmetic::traits::BaseArithmetic;
use sp_consensus::{CanAuthorWith, Proposal, Proposer, SelectChain, SyncOracle};
use sp_consensus_slots::{Slot, SlotDuration};
use sp_inherents::CreateInherentDataProviders;
use sp_runtime::{
	generic::BlockId,
	traits::{Block as BlockT, HashFor, Header as HeaderT},
};
use sp_timestamp::Timestamp;
use std::{fmt::Debug, ops::Deref, time::Duration};

/// The changes that need to applied to the storage to create the state for a block.
///
/// See [`sp_state_machine::StorageChanges`] for more information.
pub type StorageChanges<Transaction, Block> =
	sp_state_machine::StorageChanges<Transaction, HashFor<Block>>;

/// The result of [`SlotWorker::on_slot`].
#[derive(Debug, Clone)]
pub struct SlotResult<Block: BlockT, Proof> {
	/// The block that was built.
	pub block: Block,
	/// The storage proof that was recorded while building the block.
	pub storage_proof: Proof,
}

/// A worker that should be invoked at every new slot.
///
/// The implementation should not make any assumptions of the slot being bound to the time or
/// similar. The only valid assumption is that the slot number is always increasing.
#[async_trait::async_trait]
pub trait SlotWorker<B: BlockT, Proof> {
	/// Called when a new slot is triggered.
	///
	/// Returns a future that resolves to a [`SlotResult`] iff a block was successfully built in
	/// the slot. Otherwise `None` is returned.
	async fn on_slot(&mut self, slot_info: SlotInfo<B>) -> Option<SlotResult<B, Proof>>;
}

/// A skeleton implementation for `SlotWorker` which tries to claim a slot at
/// its beginning and tries to produce a block if successfully claimed, timing
/// out if block production takes too long.
#[async_trait::async_trait]
pub trait SimpleSlotWorker<B: BlockT> {
	/// A handle to a `BlockImport`.
	type BlockImport: BlockImport<B, Transaction = <Self::Proposer as Proposer<B>>::Transaction>
		+ Send
		+ 'static;

	/// A handle to a `SyncOracle`.
	type SyncOracle: SyncOracle;

	/// A handle to a `JustificationSyncLink`, allows hooking into the sync module to control the
	/// justification sync process.
	type JustificationSyncLink: JustificationSyncLink<B>;

	/// The type of future resolving to the proposer.
	type CreateProposer: Future<Output = Result<Self::Proposer, sp_consensus::Error>>
		+ Send
		+ Unpin
		+ 'static;

	/// The type of proposer to use to build blocks.
	type Proposer: Proposer<B> + Send;

	/// Data associated with a slot claim.
	type Claim: Send + Sync + 'static;

	/// Epoch data necessary for authoring.
	type EpochData: Send + Sync + 'static;

	/// The logging target to use when logging messages.
	fn logging_target(&self) -> &'static str;

	/// A handle to a `BlockImport`.
	fn block_import(&mut self) -> &mut Self::BlockImport;

	/// Returns the epoch data necessary for authoring. For time-dependent epochs,
	/// use the provided slot number as a canonical source of time.
	fn epoch_data(
		&self,
		header: &B::Header,
		slot: Slot,
	) -> Result<Self::EpochData, sp_consensus::Error>;

	/// Returns the number of authorities given the epoch data.
	/// None indicate that the authorities information is incomplete.
	fn authorities_len(&self, epoch_data: &Self::EpochData) -> Option<usize>;

	/// Tries to claim the given slot, returning an object with claim data if successful.
	async fn claim_slot(
		&self,
		header: &B::Header,
		slot: Slot,
		epoch_data: &Self::EpochData,
	) -> Option<Self::Claim>;

	/// Notifies the given slot. Similar to `claim_slot`, but will be called no matter whether we
	/// need to author blocks or not.
	fn notify_slot(&self, _header: &B::Header, _slot: Slot, _epoch_data: &Self::EpochData) {}

	/// Return the pre digest data to include in a block authored with the given claim.
	fn pre_digest_data(&self, slot: Slot, claim: &Self::Claim) -> Vec<sp_runtime::DigestItem>;

	/// Returns a function which produces a `BlockImportParams`.
	async fn block_import_params(
		&self,
		header: B::Header,
		header_hash: &B::Hash,
		body: Vec<B::Extrinsic>,
		storage_changes: StorageChanges<<Self::BlockImport as BlockImport<B>>::Transaction, B>,
		public: Self::Claim,
		epoch: Self::EpochData,
	) -> Result<
		sc_consensus::BlockImportParams<B, <Self::BlockImport as BlockImport<B>>::Transaction>,
		sp_consensus::Error,
	>;

	/// Whether to force authoring if offline.
	fn force_authoring(&self) -> bool;

	/// Returns whether the block production should back off.
	///
	/// By default this function always returns `false`.
	///
	/// An example strategy that back offs if the finalized head is lagging too much behind the tip
	/// is implemented by [`BackoffAuthoringOnFinalizedHeadLagging`].
	fn should_backoff(&self, _slot: Slot, _chain_head: &B::Header) -> bool {
		false
	}

	/// Returns a handle to a `SyncOracle`.
	fn sync_oracle(&mut self) -> &mut Self::SyncOracle;

	/// Returns a handle to a `JustificationSyncLink`.
	fn justification_sync_link(&mut self) -> &mut Self::JustificationSyncLink;

	/// Returns a `Proposer` to author on top of the given block.
	fn proposer(&mut self, block: &B::Header) -> Self::CreateProposer;

	/// Returns a [`TelemetryHandle`] if any.
	fn telemetry(&self) -> Option<TelemetryHandle>;

	/// Remaining duration for proposing.
	fn proposing_remaining_duration(&self, slot_info: &SlotInfo<B>) -> Duration;

	/// Propose a block by `Proposer`.
	async fn propose(
		&mut self,
		proposer: Self::Proposer,
		claim: &Self::Claim,
		slot_info: SlotInfo<B>,
		proposing_remaining: Delay,
	) -> Option<
		Proposal<
			B,
			<Self::Proposer as Proposer<B>>::Transaction,
			<Self::Proposer as Proposer<B>>::Proof,
		>,
	> {
		let slot = slot_info.slot;
		let telemetry = self.telemetry();
		let logging_target = self.logging_target();
		let proposing_remaining_duration = self.proposing_remaining_duration(&slot_info);
		let logs = self.pre_digest_data(slot, claim);

		// deadline our production to 98% of the total time left for proposing. As we deadline
		// the proposing below to the same total time left, the 2% margin should be enough for
		// the result to be returned.
		let proposing = proposer
			.propose(
				slot_info.inherent_data,
				sp_runtime::generic::Digest { logs },
				proposing_remaining_duration.mul_f32(0.98),
				None,
			)
			.map_err(|e| sp_consensus::Error::ClientImport(e.to_string()));

		let proposal = match futures::future::select(proposing, proposing_remaining).await {
			Either::Left((Ok(p), _)) => p,
			Either::Left((Err(err), _)) => {
				warn!(target: logging_target, "Proposing failed: {}", err);

				return None
			},
			Either::Right(_) => {
				info!(
					target: logging_target,
					"⌛️ Discarding proposal for slot {}; block production took too long", slot,
				);
				// If the node was compiled with debug, tell the user to use release optimizations.
				#[cfg(build_type = "debug")]
				info!(
					target: logging_target,
					"👉 Recompile your node in `--release` mode to mitigate this problem.",
				);
				telemetry!(
					telemetry;
					CONSENSUS_INFO;
					"slots.discarding_proposal_took_too_long";
					"slot" => *slot,
				);

				return None
			},
		};

		Some(proposal)
	}

	/// Implements [`SlotWorker::on_slot`].
	async fn on_slot(
		&mut self,
		slot_info: SlotInfo<B>,
	) -> Option<SlotResult<B, <Self::Proposer as Proposer<B>>::Proof>>
	where
		Self: Sync,
	{
		let (timestamp, slot) = (slot_info.timestamp, slot_info.slot);
		let telemetry = self.telemetry();
		let logging_target = self.logging_target();

		let proposing_remaining_duration = self.proposing_remaining_duration(&slot_info);

		let proposing_remaining = if proposing_remaining_duration == Duration::default() {
			debug!(
				target: logging_target,
				"Skipping proposal slot {} since there's no time left to propose", slot,
			);

			return None
		} else {
			Delay::new(proposing_remaining_duration)
		};

		let epoch_data = match self.epoch_data(&slot_info.chain_head, slot) {
			Ok(epoch_data) => epoch_data,
			Err(err) => {
				warn!(
					target: logging_target,
					"Unable to fetch epoch data at block {:?}: {}",
					slot_info.chain_head.hash(),
					err,
				);

				telemetry!(
					telemetry;
					CONSENSUS_WARN;
					"slots.unable_fetching_authorities";
					"slot" => ?slot_info.chain_head.hash(),
					"err" => ?err,
				);

				return None
			},
		};

		self.notify_slot(&slot_info.chain_head, slot, &epoch_data);

		let authorities_len = self.authorities_len(&epoch_data);

		if !self.force_authoring() &&
			self.sync_oracle().is_offline() &&
			authorities_len.map(|a| a > 1).unwrap_or(false)
		{
			debug!(target: logging_target, "Skipping proposal slot. Waiting for the network.");
			telemetry!(
				telemetry;
				CONSENSUS_DEBUG;
				"slots.skipping_proposal_slot";
				"authorities_len" => authorities_len,
			);

			return None
		}

		let claim = self.claim_slot(&slot_info.chain_head, slot, &epoch_data).await?;

		if self.should_backoff(slot, &slot_info.chain_head) {
			return None
		}

		debug!(
			target: logging_target,
			"Starting authorship at slot {}; timestamp = {}", slot, *timestamp,
		);

		telemetry!(
			telemetry;
			CONSENSUS_DEBUG;
			"slots.starting_authorship";
			"slot_num" => *slot,
			"timestamp" => *timestamp,
		);

		let proposer = match self.proposer(&slot_info.chain_head).await {
			Ok(p) => p,
			Err(err) => {
				warn!(target: logging_target, "Unable to author block in slot {:?}: {}", slot, err,);

				telemetry!(
					telemetry;
					CONSENSUS_WARN;
					"slots.unable_authoring_block";
					"slot" => *slot,
					"err" => ?err
				);

				return None
			},
		};

		let proposal = self.propose(proposer, &claim, slot_info, proposing_remaining).await?;

		let (block, storage_proof) = (proposal.block, proposal.proof);
		let (header, body) = block.deconstruct();
		let header_num = *header.number();
		let header_hash = header.hash();
		let parent_hash = *header.parent_hash();

		let block_import_params = match self
			.block_import_params(
				header,
				&header_hash,
				body.clone(),
				proposal.storage_changes,
				claim,
				epoch_data,
			)
			.await
		{
			Ok(bi) => bi,
			Err(err) => {
				warn!(target: logging_target, "Failed to create block import params: {}", err);

				return None
			},
		};

		info!(
			target: logging_target,
			"🔖 Pre-sealed block for proposal at {}. Hash now {:?}, previously {:?}.",
			header_num,
			block_import_params.post_hash(),
			header_hash,
		);

		telemetry!(
			telemetry;
			CONSENSUS_INFO;
			"slots.pre_sealed_block";
			"header_num" => ?header_num,
			"hash_now" => ?block_import_params.post_hash(),
			"hash_previously" => ?header_hash,
		);

		let header = block_import_params.post_header();
		match self.block_import().import_block(block_import_params, Default::default()).await {
			Ok(res) => {
				res.handle_justification(
					&header.hash(),
					*header.number(),
					self.justification_sync_link(),
				);
			},
			Err(err) => {
				warn!(
					target: logging_target,
					"Error with block built on {:?}: {}", parent_hash, err,
				);

				telemetry!(
					telemetry;
					CONSENSUS_WARN;
					"slots.err_with_block_built_on";
					"hash" => ?parent_hash,
					"err" => ?err,
				);
			},
		}

		Some(SlotResult { block: B::new(header, body), storage_proof })
	}
}

/// A type that implements [`SlotWorker`] for a type that implements [`SimpleSlotWorker`].
///
/// This is basically a workaround for Rust not supporting specialization. Otherwise we could
/// implement [`SlotWorker`] for any `T` that implements [`SimpleSlotWorker`], but currently
/// that would prevent downstream users to implement [`SlotWorker`] for their own types.
pub struct SimpleSlotWorkerToSlotWorker<T>(pub T);

#[async_trait::async_trait]
impl<T: SimpleSlotWorker<B> + Send + Sync, B: BlockT>
	SlotWorker<B, <T::Proposer as Proposer<B>>::Proof> for SimpleSlotWorkerToSlotWorker<T>
{
	async fn on_slot(
		&mut self,
		slot_info: SlotInfo<B>,
	) -> Option<SlotResult<B, <T::Proposer as Proposer<B>>::Proof>> {
		self.0.on_slot(slot_info).await
	}
}

/// Slot specific extension that the inherent data provider needs to implement.
pub trait InherentDataProviderExt {
	/// The current timestamp that will be found in the
	/// [`InherentData`](`sp_inherents::InherentData`).
	fn timestamp(&self) -> Timestamp;

	/// The current slot that will be found in the [`InherentData`](`sp_inherents::InherentData`).
	fn slot(&self) -> Slot;
}

/// Small macro for implementing `InherentDataProviderExt` for inherent data provider tuple.
macro_rules! impl_inherent_data_provider_ext_tuple {
	( T, S $(, $TN:ident)* $( , )?) => {
		impl<T, S, $( $TN ),*>  InherentDataProviderExt for (T, S, $($TN),*)
		where
			T: Deref<Target = Timestamp>,
			S: Deref<Target = Slot>,
		{
			fn timestamp(&self) -> Timestamp {
				*self.0.deref()
			}

			fn slot(&self) -> Slot {
				*self.1.deref()
			}
		}
	}
}

impl_inherent_data_provider_ext_tuple!(T, S);
impl_inherent_data_provider_ext_tuple!(T, S, A);
impl_inherent_data_provider_ext_tuple!(T, S, A, B);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D, E);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D, E, F);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D, E, F, G);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D, E, F, G, H);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D, E, F, G, H, I);
impl_inherent_data_provider_ext_tuple!(T, S, A, B, C, D, E, F, G, H, I, J);

/// Start a new slot worker.
///
/// Every time a new slot is triggered, `worker.on_slot` is called and the future it returns is
/// polled until completion, unless we are major syncing.
pub async fn start_slot_worker<B, C, W, SO, CIDP, CAW, Proof>(
	slot_duration: SlotDuration,
	client: C,
	mut worker: W,
	sync_oracle: SO,
	create_inherent_data_providers: CIDP,
	can_author_with: CAW,
) where
	B: BlockT,
	C: SelectChain<B>,
	W: SlotWorker<B, Proof>,
	SO: SyncOracle + Send,
	CIDP: CreateInherentDataProviders<B, ()> + Send,
	CIDP::InherentDataProviders: InherentDataProviderExt + Send,
	CAW: CanAuthorWith<B> + Send,
{
	let mut slots = Slots::new(slot_duration.as_duration(), create_inherent_data_providers, client);

	loop {
		let slot_info = match slots.next_slot().await {
			Ok(r) => r,
			Err(e) => {
				warn!(target: "slots", "Error while polling for next slot: {}", e);
				return
			},
		};

		if sync_oracle.is_major_syncing() {
			debug!(target: "slots", "Skipping proposal slot due to sync.");
			continue
		}

		if let Err(err) =
			can_author_with.can_author_with(&BlockId::Hash(slot_info.chain_head.hash()))
		{
			warn!(
				target: "slots",
				"Unable to author block in slot {},. `can_author_with` returned: {} \
				Probably a node update is required!",
				slot_info.slot,
				err,
			);
		} else {
			let _ = worker.on_slot(slot_info).await;
		}
	}
}

/// A header which has been checked
pub enum CheckedHeader<H, S> {
	/// A header which has slot in the future. this is the full header (not stripped)
	/// and the slot in which it should be processed.
	Deferred(H, Slot),
	/// A header which is fully checked, including signature. This is the pre-header
	/// accompanied by the seal components.
	///
	/// Includes the digest item that encoded the seal.
	Checked(H, S),
}

/// A unit type wrapper to express the proportion of a slot.
pub struct SlotProportion(f32);

impl SlotProportion {
	/// Create a new proportion.
	///
	/// The given value `inner` should be in the range `[0,1]`. If the value is not in the required
	/// range, it is clamped into the range.
	pub fn new(inner: f32) -> Self {
		Self(inner.clamp(0.0, 1.0))
	}

	/// Returns the inner that is guaranted to be in the range `[0,1]`.
	pub fn get(&self) -> f32 {
		self.0
	}
}

/// The strategy used to calculate the slot lenience used to increase the block proposal time when
/// slots have been skipped with no blocks authored.
pub enum SlotLenienceType {
	/// Increase the lenience linearly with the number of skipped slots.
	Linear,
	/// Increase the lenience exponentially with the number of skipped slots.
	Exponential,
}

impl SlotLenienceType {
	fn as_str(&self) -> &'static str {
		match self {
			SlotLenienceType::Linear => "linear",
			SlotLenienceType::Exponential => "exponential",
		}
	}
}

/// Calculate the remaining duration for block proposal taking into account whether any slots have
/// been skipped and applying the given lenience strategy. If `max_block_proposal_slot_portion` is
/// not none this method guarantees that the returned duration must be lower or equal to
/// `slot_info.duration * max_block_proposal_slot_portion`.
pub fn proposing_remaining_duration<Block: BlockT>(
	parent_slot: Option<Slot>,
	slot_info: &SlotInfo<Block>,
	block_proposal_slot_portion: &SlotProportion,
	max_block_proposal_slot_portion: Option<&SlotProportion>,
	slot_lenience_type: SlotLenienceType,
	log_target: &str,
) -> Duration {
	use sp_runtime::traits::Zero;

	let proposing_duration = slot_info.duration.mul_f32(block_proposal_slot_portion.get());

	let slot_remaining = slot_info
		.ends_at
		.checked_duration_since(std::time::Instant::now())
		.unwrap_or_default();

	let proposing_duration = std::cmp::min(slot_remaining, proposing_duration);

	// If parent is genesis block, we don't require any lenience factor.
	if slot_info.chain_head.number().is_zero() {
		return proposing_duration
	}

	let parent_slot = match parent_slot {
		Some(parent_slot) => parent_slot,
		None => return proposing_duration,
	};

	let slot_lenience = match slot_lenience_type {
		SlotLenienceType::Exponential => slot_lenience_exponential(parent_slot, slot_info),
		SlotLenienceType::Linear => slot_lenience_linear(parent_slot, slot_info),
	};

	if let Some(slot_lenience) = slot_lenience {
		let lenient_proposing_duration =
			proposing_duration + slot_lenience.mul_f32(block_proposal_slot_portion.get());

		// if we defined a maximum portion of the slot for proposal then we must make sure the
		// lenience doesn't go over it
		let lenient_proposing_duration =
			if let Some(max_block_proposal_slot_portion) = max_block_proposal_slot_portion {
				std::cmp::min(
					lenient_proposing_duration,
					slot_info.duration.mul_f32(max_block_proposal_slot_portion.get()),
				)
			} else {
				lenient_proposing_duration
			};

		debug!(
			target: log_target,
			"No block for {} slots. Applying {} lenience, total proposing duration: {}ms",
			slot_info.slot.saturating_sub(parent_slot + 1),
			slot_lenience_type.as_str(),
			lenient_proposing_duration.as_millis(),
		);

		lenient_proposing_duration
	} else {
		proposing_duration
	}
}

/// Calculate a slot duration lenience based on the number of missed slots from current
/// to parent. If the number of skipped slots is greated than 0 this method will apply
/// an exponential backoff of at most `2^7 * slot_duration`, if no slots were skipped
/// this method will return `None.`
pub fn slot_lenience_exponential<Block: BlockT>(
	parent_slot: Slot,
	slot_info: &SlotInfo<Block>,
) -> Option<Duration> {
	// never give more than 2^this times the lenience.
	const BACKOFF_CAP: u64 = 7;

	// how many slots it takes before we double the lenience.
	const BACKOFF_STEP: u64 = 2;

	// we allow a lenience of the number of slots since the head of the
	// chain was produced, minus 1 (since there is always a difference of at least 1)
	//
	// exponential back-off.
	// in normal cases we only attempt to issue blocks up to the end of the slot.
	// when the chain has been stalled for a few slots, we give more lenience.
	let skipped_slots = *slot_info.slot.saturating_sub(parent_slot + 1);

	if skipped_slots == 0 {
		None
	} else {
		let slot_lenience = skipped_slots / BACKOFF_STEP;
		let slot_lenience = std::cmp::min(slot_lenience, BACKOFF_CAP);
		let slot_lenience = 1 << slot_lenience;
		Some(slot_lenience * slot_info.duration)
	}
}

/// Calculate a slot duration lenience based on the number of missed slots from current
/// to parent. If the number of skipped slots is greated than 0 this method will apply
/// a linear backoff of at most `20 * slot_duration`, if no slots were skipped
/// this method will return `None.`
pub fn slot_lenience_linear<Block: BlockT>(
	parent_slot: Slot,
	slot_info: &SlotInfo<Block>,
) -> Option<Duration> {
	// never give more than 20 times more lenience.
	const BACKOFF_CAP: u64 = 20;

	// we allow a lenience of the number of slots since the head of the
	// chain was produced, minus 1 (since there is always a difference of at least 1)
	//
	// linear back-off.
	// in normal cases we only attempt to issue blocks up to the end of the slot.
	// when the chain has been stalled for a few slots, we give more lenience.
	let skipped_slots = *slot_info.slot.saturating_sub(parent_slot + 1);

	if skipped_slots == 0 {
		None
	} else {
		let slot_lenience = std::cmp::min(skipped_slots, BACKOFF_CAP);
		// We cap `slot_lenience` to `20`, so it should always fit into an `u32`.
		Some(slot_info.duration * (slot_lenience as u32))
	}
}

/// Trait for providing the strategy for when to backoff block authoring.
pub trait BackoffAuthoringBlocksStrategy<N> {
	/// Returns true if we should backoff authoring new blocks.
	fn should_backoff(
		&self,
		chain_head_number: N,
		chain_head_slot: Slot,
		finalized_number: N,
		slow_now: Slot,
		logging_target: &str,
	) -> bool;
}

/// A simple default strategy for how to decide backing off authoring blocks if the number of
/// unfinalized blocks grows too large.
#[derive(Clone)]
pub struct BackoffAuthoringOnFinalizedHeadLagging<N> {
	/// The max interval to backoff when authoring blocks, regardless of delay in finality.
	pub max_interval: N,
	/// The number of unfinalized blocks allowed before starting to consider to backoff authoring
	/// blocks. Note that depending on the value for `authoring_bias`, there might still be an
	/// additional wait until block authorship starts getting declined.
	pub unfinalized_slack: N,
	/// Scales the backoff rate. A higher value effectively means we backoff slower, taking longer
	/// time to reach the maximum backoff as the unfinalized head of chain grows.
	pub authoring_bias: N,
}

/// These parameters is supposed to be some form of sensible defaults.
impl<N: BaseArithmetic> Default for BackoffAuthoringOnFinalizedHeadLagging<N> {
	fn default() -> Self {
		Self {
			// Never wait more than 100 slots before authoring blocks, regardless of delay in
			// finality.
			max_interval: 100.into(),
			// Start to consider backing off block authorship once we have 50 or more unfinalized
			// blocks at the head of the chain.
			unfinalized_slack: 50.into(),
			// A reasonable default for the authoring bias, or reciprocal interval scaling, is 2.
			// Effectively meaning that consider the unfinalized head suffix length to grow half as
			// fast as in actuality.
			authoring_bias: 2.into(),
		}
	}
}

impl<N> BackoffAuthoringBlocksStrategy<N> for BackoffAuthoringOnFinalizedHeadLagging<N>
where
	N: BaseArithmetic + Copy,
{
	fn should_backoff(
		&self,
		chain_head_number: N,
		chain_head_slot: Slot,
		finalized_number: N,
		slot_now: Slot,
		logging_target: &str,
	) -> bool {
		// This should not happen, but we want to keep the previous behaviour if it does.
		if slot_now <= chain_head_slot {
			return false
		}

		// There can be race between getting the finalized number and getting the best number.
		// So, better be safe than sorry.
		let unfinalized_block_length = chain_head_number.saturating_sub(finalized_number);
		let interval =
			unfinalized_block_length.saturating_sub(self.unfinalized_slack) / self.authoring_bias;
		let interval = interval.min(self.max_interval);

		// We're doing arithmetic between block and slot numbers.
		let interval: u64 = interval.unique_saturated_into();

		// If interval is nonzero we backoff if the current slot isn't far enough ahead of the chain
		// head.
		if *slot_now <= *chain_head_slot + interval {
			info!(
				target: logging_target,
				"Backing off claiming new slot for block authorship: finality is lagging.",
			);
			true
		} else {
			false
		}
	}
}

impl<N> BackoffAuthoringBlocksStrategy<N> for () {
	fn should_backoff(
		&self,
		_chain_head_number: N,
		_chain_head_slot: Slot,
		_finalized_number: N,
		_slot_now: Slot,
		_logging_target: &str,
	) -> bool {
		false
	}
}

#[cfg(test)]
mod test {
	use super::*;
	use sp_runtime::traits::NumberFor;
	use std::time::{Duration, Instant};
	use substrate_test_runtime_client::runtime::{Block, Header};

	const SLOT_DURATION: Duration = Duration::from_millis(6000);

	fn slot(slot: u64) -> super::slots::SlotInfo<Block> {
		super::slots::SlotInfo {
			slot: slot.into(),
			duration: SLOT_DURATION,
			timestamp: Default::default(),
			inherent_data: Default::default(),
			ends_at: Instant::now() + SLOT_DURATION,
			chain_head: Header::new(
				1,
				Default::default(),
				Default::default(),
				Default::default(),
				Default::default(),
			),
			block_size_limit: None,
		}
	}

	#[test]
	fn linear_slot_lenience() {
		// if no slots are skipped there should be no lenience
		assert_eq!(super::slot_lenience_linear(1u64.into(), &slot(2)), None);

		// otherwise the lenience is incremented linearly with
		// the number of skipped slots.
		for n in 3..=22 {
			assert_eq!(
				super::slot_lenience_linear(1u64.into(), &slot(n)),
				Some(SLOT_DURATION * (n - 2) as u32),
			);
		}

		// but we cap it to a maximum of 20 slots
		assert_eq!(super::slot_lenience_linear(1u64.into(), &slot(23)), Some(SLOT_DURATION * 20));
	}

	#[test]
	fn exponential_slot_lenience() {
		// if no slots are skipped there should be no lenience
		assert_eq!(super::slot_lenience_exponential(1u64.into(), &slot(2)), None);

		// otherwise the lenience is incremented exponentially every two slots
		for n in 3..=17 {
			assert_eq!(
				super::slot_lenience_exponential(1u64.into(), &slot(n)),
				Some(SLOT_DURATION * 2u32.pow((n / 2 - 1) as u32)),
			);
		}

		// but we cap it to a maximum of 14 slots
		assert_eq!(
			super::slot_lenience_exponential(1u64.into(), &slot(18)),
			Some(SLOT_DURATION * 2u32.pow(7)),
		);

		assert_eq!(
			super::slot_lenience_exponential(1u64.into(), &slot(19)),
			Some(SLOT_DURATION * 2u32.pow(7)),
		);
	}

	#[test]
	fn proposing_remaining_duration_should_apply_lenience_based_on_proposal_slot_proportion() {
		assert_eq!(
			proposing_remaining_duration(
				Some(0.into()),
				&slot(2),
				&SlotProportion(0.25),
				None,
				SlotLenienceType::Linear,
				"test",
			),
			SLOT_DURATION.mul_f32(0.25 * 2.0),
		);
	}

	#[test]
	fn proposing_remaining_duration_should_never_exceed_max_proposal_slot_proportion() {
		assert_eq!(
			proposing_remaining_duration(
				Some(0.into()),
				&slot(100),
				&SlotProportion(0.25),
				Some(SlotProportion(0.9)).as_ref(),
				SlotLenienceType::Exponential,
				"test",
			),
			SLOT_DURATION.mul_f32(0.9),
		);
	}

	#[derive(PartialEq, Debug)]
	struct HeadState {
		head_number: NumberFor<Block>,
		head_slot: u64,
		slot_now: NumberFor<Block>,
	}

	impl HeadState {
		fn author_block(&mut self) {
			// Add a block to the head, and set latest slot to the current
			self.head_number += 1;
			self.head_slot = self.slot_now;
			// Advance slot to next
			self.slot_now += 1;
		}

		fn dont_author_block(&mut self) {
			self.slot_now += 1;
		}
	}

	#[test]
	fn should_never_backoff_when_head_not_advancing() {
		let strategy = BackoffAuthoringOnFinalizedHeadLagging::<NumberFor<Block>> {
			max_interval: 100,
			unfinalized_slack: 5,
			authoring_bias: 2,
		};

		let head_number = 1;
		let head_slot = 1;
		let finalized_number = 1;
		let slot_now = 2;

		let should_backoff: Vec<bool> = (slot_now..1000)
			.map(|s| {
				strategy.should_backoff(
					head_number,
					head_slot.into(),
					finalized_number,
					s.into(),
					"slots",
				)
			})
			.collect();

		// Should always be false, since the head isn't advancing
		let expected: Vec<bool> = (slot_now..1000).map(|_| false).collect();
		assert_eq!(should_backoff, expected);
	}

	#[test]
	fn should_stop_authoring_if_blocks_are_still_produced_when_finality_stalled() {
		let strategy = BackoffAuthoringOnFinalizedHeadLagging::<NumberFor<Block>> {
			max_interval: 100,
			unfinalized_slack: 5,
			authoring_bias: 2,
		};

		let mut head_number = 1;
		let mut head_slot = 1;
		let finalized_number = 1;
		let slot_now = 2;

		let should_backoff: Vec<bool> = (slot_now..300)
			.map(move |s| {
				let b = strategy.should_backoff(
					head_number,
					head_slot.into(),
					finalized_number,
					s.into(),
					"slots",
				);
				// Chain is still advancing (by someone else)
				head_number += 1;
				head_slot = s;
				b
			})
			.collect();

		// Should always be true after a short while, since the chain is advancing but finality is
		// stalled
		let expected: Vec<bool> = (slot_now..300).map(|s| s > 8).collect();
		assert_eq!(should_backoff, expected);
	}

	#[test]
	fn should_never_backoff_if_max_interval_is_reached() {
		let strategy = BackoffAuthoringOnFinalizedHeadLagging::<NumberFor<Block>> {
			max_interval: 100,
			unfinalized_slack: 5,
			authoring_bias: 2,
		};

		// The limit `max_interval` is used when the unfinalized chain grows to
		// 	`max_interval * authoring_bias + unfinalized_slack`,
		// which for the above parameters becomes
		// 	100 * 2 + 5 = 205.
		// Hence we trigger this with head_number > finalized_number + 205.
		let head_number = 207;
		let finalized_number = 1;

		// The limit is then used once the current slot is `max_interval` ahead of slot of the head.
		let head_slot = 1;
		let slot_now = 2;
		let max_interval = strategy.max_interval;

		let should_backoff: Vec<bool> = (slot_now..200)
			.map(|s| {
				strategy.should_backoff(
					head_number,
					head_slot.into(),
					finalized_number,
					s.into(),
					"slots",
				)
			})
			.collect();

		// Should backoff (true) until we are `max_interval` number of slots ahead of the chain
		// head slot, then we never backoff (false).
		let expected: Vec<bool> = (slot_now..200).map(|s| s <= max_interval + head_slot).collect();
		assert_eq!(should_backoff, expected);
	}

	#[test]
	fn should_backoff_authoring_when_finality_stalled() {
		let param = BackoffAuthoringOnFinalizedHeadLagging {
			max_interval: 100,
			unfinalized_slack: 5,
			authoring_bias: 2,
		};

		let finalized_number = 2;
		let mut head_state = HeadState { head_number: 4, head_slot: 10, slot_now: 11 };

		let should_backoff = |head_state: &HeadState| -> bool {
			<dyn BackoffAuthoringBlocksStrategy<NumberFor<Block>>>::should_backoff(
				&param,
				head_state.head_number,
				head_state.head_slot.into(),
				finalized_number,
				head_state.slot_now.into(),
				"slots",
			)
		};

		let backoff: Vec<bool> = (head_state.slot_now..200)
			.map(|_| {
				if should_backoff(&head_state) {
					head_state.dont_author_block();
					true
				} else {
					head_state.author_block();
					false
				}
			})
			.collect();

		// Gradually start to backoff more and more frequently
		let expected = [
			false, false, false, false, false, // no effect
			true, false, true, false, // 1:1
			true, true, false, true, true, false, // 2:1
			true, true, true, false, true, true, true, false, // 3:1
			true, true, true, true, false, true, true, true, true, false, // 4:1
			true, true, true, true, true, false, true, true, true, true, true, false, // 5:1
			true, true, true, true, true, true, false, true, true, true, true, true, true,
			false, // 6:1
			true, true, true, true, true, true, true, false, true, true, true, true, true, true,
			true, false, // 7:1
			true, true, true, true, true, true, true, true, false, true, true, true, true, true,
			true, true, true, false, // 8:1
			true, true, true, true, true, true, true, true, true, false, true, true, true, true,
			true, true, true, true, true, false, // 9:1
			true, true, true, true, true, true, true, true, true, true, false, true, true, true,
			true, true, true, true, true, true, true, false, // 10:1
			true, true, true, true, true, true, true, true, true, true, true, false, true, true,
			true, true, true, true, true, true, true, true, true, false, // 11:1
			true, true, true, true, true, true, true, true, true, true, true, true, false, true,
			true, true, true, true, true, true, true, true, true, true, true, false, // 12:1
			true, true, true, true,
		];

		assert_eq!(backoff.as_slice(), &expected[..]);
	}

	#[test]
	fn should_never_wait_more_than_max_interval() {
		let param = BackoffAuthoringOnFinalizedHeadLagging {
			max_interval: 100,
			unfinalized_slack: 5,
			authoring_bias: 2,
		};

		let finalized_number = 2;
		let starting_slot = 11;
		let mut head_state = HeadState { head_number: 4, head_slot: 10, slot_now: starting_slot };

		let should_backoff = |head_state: &HeadState| -> bool {
			<dyn BackoffAuthoringBlocksStrategy<NumberFor<Block>>>::should_backoff(
				&param,
				head_state.head_number,
				head_state.head_slot.into(),
				finalized_number,
				head_state.slot_now.into(),
				"slots",
			)
		};

		let backoff: Vec<bool> = (head_state.slot_now..40000)
			.map(|_| {
				if should_backoff(&head_state) {
					head_state.dont_author_block();
					true
				} else {
					head_state.author_block();
					false
				}
			})
			.collect();

		let slots_claimed: Vec<usize> = backoff
			.iter()
			.enumerate()
			.filter(|&(_i, x)| x == &false)
			.map(|(i, _x)| i + starting_slot as usize)
			.collect();

		let last_slot = backoff.len() + starting_slot as usize;
		let mut last_two_claimed = slots_claimed.iter().rev().take(2);

		// Check that we claimed all the way to the end. Check two slots for when we have an uneven
		// number of slots_claimed.
		let expected_distance = param.max_interval as usize + 1;
		assert_eq!(last_slot - last_two_claimed.next().unwrap(), 92);
		assert_eq!(last_slot - last_two_claimed.next().unwrap(), 92 + expected_distance);

		let intervals: Vec<_> = slots_claimed.windows(2).map(|x| x[1] - x[0]).collect();

		// The key thing is that the distance between claimed slots is capped to `max_interval + 1`
		// assert_eq!(max_observed_interval, Some(&expected_distance));
		assert_eq!(intervals.iter().max(), Some(&expected_distance));

		// But lets assert all distances, which we expect to grow linearly until `max_interval + 1`
		let expected_intervals: Vec<_> =
			(0..497).map(|i| (i / 2).max(1).min(expected_distance)).collect();

		assert_eq!(intervals, expected_intervals);
	}

	fn run_until_max_interval(param: BackoffAuthoringOnFinalizedHeadLagging<u64>) -> (u64, u64) {
		let finalized_number = 0;
		let mut head_state = HeadState { head_number: 0, head_slot: 0, slot_now: 1 };

		let should_backoff = |head_state: &HeadState| -> bool {
			<dyn BackoffAuthoringBlocksStrategy<NumberFor<Block>>>::should_backoff(
				&param,
				head_state.head_number,
				head_state.head_slot.into(),
				finalized_number,
				head_state.slot_now.into(),
				"slots",
			)
		};

		// Number of blocks until we reach the max interval
		let block_for_max_interval =
			param.max_interval * param.authoring_bias + param.unfinalized_slack;

		while head_state.head_number < block_for_max_interval {
			if should_backoff(&head_state) {
				head_state.dont_author_block();
			} else {
				head_state.author_block();
			}
		}

		let slot_time = 6;
		let time_to_reach_limit = slot_time * head_state.slot_now;
		(block_for_max_interval, time_to_reach_limit)
	}

	// Denoting
	// 	C: unfinalized_slack
	// 	M: authoring_bias
	// 	X: max_interval
	// then the number of slots to reach the max interval can be computed from
	// 	(start_slot + C) + M * sum(n, 1, X)
	// or
	// 	(start_slot + C) + M * X*(X+1)/2
	fn expected_time_to_reach_max_interval(
		param: &BackoffAuthoringOnFinalizedHeadLagging<u64>,
	) -> (u64, u64) {
		let c = param.unfinalized_slack;
		let m = param.authoring_bias;
		let x = param.max_interval;
		let slot_time = 6;

		let block_for_max_interval = x * m + c;

		// The 1 is because we start at slot_now = 1.
		let expected_number_of_slots = (1 + c) + m * x * (x + 1) / 2;
		let time_to_reach = expected_number_of_slots * slot_time;

		(block_for_max_interval, time_to_reach)
	}

	#[test]
	fn time_to_reach_upper_bound_for_smaller_slack() {
		let param = BackoffAuthoringOnFinalizedHeadLagging {
			max_interval: 100,
			unfinalized_slack: 5,
			authoring_bias: 2,
		};
		let expected = expected_time_to_reach_max_interval(&param);
		let (block_for_max_interval, time_to_reach_limit) = run_until_max_interval(param);
		assert_eq!((block_for_max_interval, time_to_reach_limit), expected);
		// Note: 16 hours is 57600 sec
		assert_eq!((block_for_max_interval, time_to_reach_limit), (205, 60636));
	}

	#[test]
	fn time_to_reach_upper_bound_for_larger_slack() {
		let param = BackoffAuthoringOnFinalizedHeadLagging {
			max_interval: 100,
			unfinalized_slack: 50,
			authoring_bias: 2,
		};
		let expected = expected_time_to_reach_max_interval(&param);
		let (block_for_max_interval, time_to_reach_limit) = run_until_max_interval(param);
		assert_eq!((block_for_max_interval, time_to_reach_limit), expected);
		assert_eq!((block_for_max_interval, time_to_reach_limit), (250, 60906));
	}
}