1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// This file is part of Substrate.

// Copyright (C) 2018-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

use std::{
	collections::{HashMap, HashSet},
	fmt, hash,
	sync::Arc,
};

use sp_core::hexdisplay::HexDisplay;
use sp_runtime::transaction_validity::TransactionTag as Tag;
use std::time::Instant;

use super::base_pool::Transaction;

#[derive(parity_util_mem::MallocSizeOf)]
/// Transaction with partially satisfied dependencies.
pub struct WaitingTransaction<Hash, Ex> {
	/// Transaction details.
	pub transaction: Arc<Transaction<Hash, Ex>>,
	/// Tags that are required and have not been satisfied yet by other transactions in the pool.
	pub missing_tags: HashSet<Tag>,
	/// Time of import to the Future Queue.
	pub imported_at: Instant,
}

impl<Hash: fmt::Debug, Ex: fmt::Debug> fmt::Debug for WaitingTransaction<Hash, Ex> {
	fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
		write!(fmt, "WaitingTransaction {{ ")?;
		write!(fmt, "imported_at: {:?}, ", self.imported_at)?;
		write!(fmt, "transaction: {:?}, ", self.transaction)?;
		write!(
			fmt,
			"missing_tags: {{{}}}",
			self.missing_tags
				.iter()
				.map(|tag| HexDisplay::from(tag).to_string())
				.collect::<Vec<_>>()
				.join(", "),
		)?;
		write!(fmt, "}}")
	}
}

impl<Hash, Ex> Clone for WaitingTransaction<Hash, Ex> {
	fn clone(&self) -> Self {
		Self {
			transaction: self.transaction.clone(),
			missing_tags: self.missing_tags.clone(),
			imported_at: self.imported_at,
		}
	}
}

impl<Hash, Ex> WaitingTransaction<Hash, Ex> {
	/// Creates a new `WaitingTransaction`.
	///
	/// Computes the set of missing tags based on the requirements and tags that
	/// are provided by all transactions in the ready queue.
	pub fn new(
		transaction: Transaction<Hash, Ex>,
		provided: &HashMap<Tag, Hash>,
		recently_pruned: &[HashSet<Tag>],
	) -> Self {
		let missing_tags = transaction
			.requires
			.iter()
			.filter(|tag| {
				// is true if the tag is already satisfied either via transaction in the pool
				// or one that was recently included.
				let is_provided = provided.contains_key(&**tag) ||
					recently_pruned.iter().any(|x| x.contains(&**tag));
				!is_provided
			})
			.cloned()
			.collect();

		Self { transaction: Arc::new(transaction), missing_tags, imported_at: Instant::now() }
	}

	/// Marks the tag as satisfied.
	pub fn satisfy_tag(&mut self, tag: &Tag) {
		self.missing_tags.remove(tag);
	}

	/// Returns true if transaction has all requirements satisfied.
	pub fn is_ready(&self) -> bool {
		self.missing_tags.is_empty()
	}
}

/// A pool of transactions that are not yet ready to be included in the block.
///
/// Contains transactions that are still awaiting for some other transactions that
/// could provide a tag that they require.
#[derive(Debug, parity_util_mem::MallocSizeOf)]
pub struct FutureTransactions<Hash: hash::Hash + Eq, Ex> {
	/// tags that are not yet provided by any transaction and we await for them
	wanted_tags: HashMap<Tag, HashSet<Hash>>,
	/// Transactions waiting for a particular other transaction
	waiting: HashMap<Hash, WaitingTransaction<Hash, Ex>>,
}

impl<Hash: hash::Hash + Eq, Ex> Default for FutureTransactions<Hash, Ex> {
	fn default() -> Self {
		Self { wanted_tags: Default::default(), waiting: Default::default() }
	}
}

const WAITING_PROOF: &str = r"#
In import we always insert to `waiting` if we push to `wanted_tags`;
when removing from `waiting` we always clear `wanted_tags`;
every hash from `wanted_tags` is always present in `waiting`;
qed
#";

impl<Hash: hash::Hash + Eq + Clone, Ex> FutureTransactions<Hash, Ex> {
	/// Import transaction to Future queue.
	///
	/// Only transactions that don't have all their tags satisfied should occupy
	/// the Future queue.
	/// As soon as required tags are provided by some other transactions that are ready
	/// we should remove the transactions from here and move them to the Ready queue.
	pub fn import(&mut self, tx: WaitingTransaction<Hash, Ex>) {
		assert!(!tx.is_ready(), "Transaction is ready.");
		assert!(
			!self.waiting.contains_key(&tx.transaction.hash),
			"Transaction is already imported."
		);

		// Add all tags that are missing
		for tag in &tx.missing_tags {
			let entry = self.wanted_tags.entry(tag.clone()).or_insert_with(HashSet::new);
			entry.insert(tx.transaction.hash.clone());
		}

		// Add the transaction to a by-hash waiting map
		self.waiting.insert(tx.transaction.hash.clone(), tx);
	}

	/// Returns true if given hash is part of the queue.
	pub fn contains(&self, hash: &Hash) -> bool {
		self.waiting.contains_key(hash)
	}

	/// Returns a list of known transactions
	pub fn by_hashes(&self, hashes: &[Hash]) -> Vec<Option<Arc<Transaction<Hash, Ex>>>> {
		hashes
			.iter()
			.map(|h| self.waiting.get(h).map(|x| x.transaction.clone()))
			.collect()
	}

	/// Satisfies provided tags in transactions that are waiting for them.
	///
	/// Returns (and removes) transactions that became ready after their last tag got
	/// satisfied and now we can remove them from Future and move to Ready queue.
	pub fn satisfy_tags<T: AsRef<Tag>>(
		&mut self,
		tags: impl IntoIterator<Item = T>,
	) -> Vec<WaitingTransaction<Hash, Ex>> {
		let mut became_ready = vec![];

		for tag in tags {
			if let Some(hashes) = self.wanted_tags.remove(tag.as_ref()) {
				for hash in hashes {
					let is_ready = {
						let tx = self.waiting.get_mut(&hash).expect(WAITING_PROOF);
						tx.satisfy_tag(tag.as_ref());
						tx.is_ready()
					};

					if is_ready {
						let tx = self.waiting.remove(&hash).expect(WAITING_PROOF);
						became_ready.push(tx);
					}
				}
			}
		}

		became_ready
	}

	/// Removes transactions for given list of hashes.
	///
	/// Returns a list of actually removed transactions.
	pub fn remove(&mut self, hashes: &[Hash]) -> Vec<Arc<Transaction<Hash, Ex>>> {
		let mut removed = vec![];
		for hash in hashes {
			if let Some(waiting_tx) = self.waiting.remove(hash) {
				// remove from wanted_tags as well
				for tag in waiting_tx.missing_tags {
					let remove = if let Some(wanted) = self.wanted_tags.get_mut(&tag) {
						wanted.remove(hash);
						wanted.is_empty()
					} else {
						false
					};
					if remove {
						self.wanted_tags.remove(&tag);
					}
				}
				// add to result
				removed.push(waiting_tx.transaction)
			}
		}
		removed
	}

	/// Fold a list of future transactions to compute a single value.
	pub fn fold<R, F: FnMut(Option<R>, &WaitingTransaction<Hash, Ex>) -> Option<R>>(
		&mut self,
		f: F,
	) -> Option<R> {
		self.waiting.values().fold(None, f)
	}

	/// Returns iterator over all future transactions
	pub fn all(&self) -> impl Iterator<Item = &Transaction<Hash, Ex>> {
		self.waiting.values().map(|waiting| &*waiting.transaction)
	}

	/// Removes and returns all future transactions.
	pub fn clear(&mut self) -> Vec<Arc<Transaction<Hash, Ex>>> {
		self.wanted_tags.clear();
		self.waiting.drain().map(|(_, tx)| tx.transaction).collect()
	}

	/// Returns number of transactions in the Future queue.
	pub fn len(&self) -> usize {
		self.waiting.len()
	}

	/// Returns sum of encoding lengths of all transactions in this queue.
	pub fn bytes(&self) -> usize {
		self.waiting.values().fold(0, |acc, tx| acc + tx.transaction.bytes)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_runtime::transaction_validity::TransactionSource;

	#[test]
	fn can_track_heap_size() {
		let mut future = FutureTransactions::default();
		future.import(WaitingTransaction {
			transaction: Transaction {
				data: vec![0u8; 1024],
				bytes: 1,
				hash: 1,
				priority: 1,
				valid_till: 2,
				requires: vec![vec![1], vec![2]],
				provides: vec![vec![3], vec![4]],
				propagate: true,
				source: TransactionSource::External,
			}
			.into(),
			missing_tags: vec![vec![1u8], vec![2u8]].into_iter().collect(),
			imported_at: std::time::Instant::now(),
		});

		// data is at least 1024!
		assert!(parity_util_mem::malloc_size(&future) > 1024);
	}
}