1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
//! Crate `slice-group-by` is a library for efficiently iterating on a slice by groups defined by
//! a function that specifies if two elements are in the same group.
//!
//! # Example: Linear Searched Immutable Groups
//!
//! You will only need to define a function that returns `true` if two elements are in the same group.
//!
//! The `LinearGroupBy` iterator will always gives contiguous elements to the predicate function.
//!
//! ```rust
//! use slice_group_by::GroupBy;
//!
//! let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
//!
//! let mut iter = slice.linear_group_by_key(|x| -x);
//!
//! assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
//! assert_eq!(iter.next(), Some(&[3, 3][..]));
//! assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
//! assert_eq!(iter.next(), None);
//! ```
//!
//! # Example: Linear Searched Immutable Str Slices
//!
//! You will only need to define a function that returns `true` if two `char` are in the same group.
//!
//! The `LinearStrGroupBy` iterator will always gives contiguous `char` to the predicate function.
//!
//! ```rust
//! use slice_group_by::StrGroupBy;
//!
//! let string = "aaaabbbbb饰饰cccc";
//!
//! let mut iter = string.linear_group_by(|a, b| a == b);
//!
//! assert_eq!(iter.next(), Some("aaaa"));
//! assert_eq!(iter.next(), Some("bbbbb"));
//! assert_eq!(iter.next(), Some("饰饰"));
//! assert_eq!(iter.next(), Some("cccc"));
//! assert_eq!(iter.next(), None);
//! ```
//!
//! # Example: Binary Searched Mutable Groups
//!
//! It is also possible to get mutable non overlapping groups of a slice.
//!
//! The `BinaryGroupBy/Mut` and `ExponentialGroupBy/Mut` iterators will not necessarily
//! gives contiguous elements to the predicate function. The predicate function should implement
//! an order consistent with the sort order of the slice.
//!
//! ```rust
//! use slice_group_by::GroupByMut;
//!
//! let slice = &mut [1, 1, 1, 2, 2, 2, 3, 3];
//!
//! let mut iter = slice.binary_group_by_mut(|a, b| a == b);
//!
//! assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
//! assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
//! assert_eq!(iter.next(), Some(&mut [3, 3][..]));
//! assert_eq!(iter.next(), None);
//! ```
//!
//! # Example: Exponential Searched Mutable Groups starting from the End
//!
//! It is also possible to get mutable non overlapping groups of a slice even starting from the end of it.
//!
//! ```rust
//! use slice_group_by::GroupByMut;
//!
//! let slice = &mut [1, 1, 1, 2, 2, 2, 3, 3];
//!
//! let mut iter = slice.exponential_group_by_mut(|a, b| a == b).rev();
//!
//! assert_eq!(iter.next(), Some(&mut [3, 3][..]));
//! assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
//! assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
//! assert_eq!(iter.next(), None);
//! ```
//!
#![cfg_attr(feature = "nightly", feature(ptr_offset_from))]
#![cfg_attr(feature = "nightly", feature(test))]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#[cfg(all(not(test), not(feature = "std")))]
extern crate core as std;
macro_rules! group_by_wrapped {
(struct $name:ident, $elem:ty) => {
impl<'a, T: 'a> std::iter::Iterator for $name<'a, T>
where T: PartialEq,
{
type Item = $elem;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
fn last(self) -> Option<Self::Item> {
self.0.last()
}
}
impl<'a, T: 'a> DoubleEndedIterator for $name<'a, T>
where T: PartialEq,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
}
impl<'a, T: 'a> std::iter::FusedIterator for $name<'a, T>
where T: PartialEq,
{ }
}
}
mod linear_group;
mod binary_group;
mod exponential_group;
mod linear_str_group;
use std::cmp::{self, Ordering};
pub use self::linear_group::{
LinearGroupByKey,
LinearGroupBy,
LinearGroup,
LinearGroupByKeyMut,
LinearGroupByMut,
LinearGroupMut,
};
pub use self::binary_group::{
BinaryGroupByKey,
BinaryGroupBy,
BinaryGroup,
BinaryGroupByKeyMut,
BinaryGroupByMut,
BinaryGroupMut,
};
pub use self::exponential_group::{
ExponentialGroupByKey,
ExponentialGroupBy,
ExponentialGroup,
ExponentialGroupByKeyMut,
ExponentialGroupByMut,
ExponentialGroupMut,
};
pub use self::linear_str_group::{
LinearStrGroupByKey,
LinearStrGroupBy,
LinearStrGroup,
LinearStrGroupByKeyMut,
LinearStrGroupByMut,
LinearStrGroupMut,
};
#[cfg(feature = "nightly")]
#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
to.offset_from(from) as usize
}
#[cfg(not(feature = "nightly"))]
#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
use std::mem;
(to as usize - from as usize) / mem::size_of::<T>()
}
/// Exponential searches this sorted slice for a given element.
///
/// If the value is found then `Ok` is returned, containing the index of the matching element;
/// if the value is not found then `Err` is returned, containing the index where a matching element
/// could be inserted while maintaining sorted order.
///
/// # Examples
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1, 4]`.
///
/// ```
/// use slice_group_by::exponential_search;
///
/// let s = &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
///
/// assert_eq!(exponential_search(s, &13), Ok(9));
/// assert_eq!(exponential_search(s, &4), Err(7));
/// assert_eq!(exponential_search(s, &100), Err(13));
/// let r = exponential_search(s, &1);
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
#[inline]
pub fn exponential_search<T>(slice: &[T], elem: &T) -> Result<usize, usize>
where T: Ord
{
exponential_search_by(slice, |x| x.cmp(elem))
}
/// Binary searches this sorted slice with a comparator function.
///
/// The comparator function should implement an order consistent with the sort order of
/// the underlying slice, returning an order code that indicates whether its argument
/// is `Less`, `Equal` or `Greater` the desired target.
///
/// If the value is found then `Ok` is returned, containing the index of the matching element;
/// if the value is not found then `Err` is returned, containing the index where a matching element
/// could be inserted while maintaining sorted order.
///
/// # Examples
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1, 4]`.
///
/// ```
/// use slice_group_by::exponential_search_by;
///
/// let s = &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
///
/// let seek = 13;
/// assert_eq!(exponential_search_by(s, |probe| probe.cmp(&seek)), Ok(9));
/// let seek = 4;
/// assert_eq!(exponential_search_by(s, |probe| probe.cmp(&seek)), Err(7));
/// let seek = 100;
/// assert_eq!(exponential_search_by(s, |probe| probe.cmp(&seek)), Err(13));
/// let seek = 1;
/// let r = exponential_search_by(s, |probe| probe.cmp(&seek));
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
#[inline]
pub fn exponential_search_by<T, F>(slice: &[T], mut f: F) -> Result<usize, usize>
where F: FnMut(&T) -> Ordering,
{
let mut index = 1;
while index < slice.len() && f(&slice[index]) == Ordering::Less {
index *= 2;
}
let half_bound = index / 2;
let bound = cmp::min(index + 1, slice.len());
match slice[half_bound..bound].binary_search_by(f) {
Ok(pos) => Ok(half_bound + pos),
Err(pos) => Err(half_bound + pos),
}
}
/// Binary searches this sorted slice with a key extraction function.
///
/// Assumes that the slice is sorted by the key.
///
/// If the value is found then `Ok` is returned, containing the index of the matching element;
/// if the value is not found then `Err` is returned, containing the index where a matching element
/// could be inserted while maintaining sorted order.
///
/// # Examples
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1, 4]`.
///
/// ```
/// use slice_group_by::exponential_search_by_key;
///
/// let s = &[(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
/// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
/// (1, 21), (2, 34), (4, 55)];
///
/// assert_eq!(exponential_search_by_key(s, &13, |&(a,b)| b), Ok(9));
/// assert_eq!(exponential_search_by_key(s, &4, |&(a,b)| b), Err(7));
/// assert_eq!(exponential_search_by_key(s, &100, |&(a,b)| b), Err(13));
/// let r = exponential_search_by_key(s, &1, |&(a,b)| b);
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
#[inline]
pub fn exponential_search_by_key<T, B, F>(slice: &[T], b: &B, mut f: F) -> Result<usize, usize>
where F: FnMut(&T) -> B,
B: Ord
{
exponential_search_by(slice, |k| f(k).cmp(b))
}
/// A convenient trait to construct an iterator returning non-overlapping groups
/// defined by a predicate.
pub trait GroupBy<T>
{
/// Returns an iterator on slice groups based that will use the given function to generate keys
/// and determine groups based on them. It uses *linear search* to iterate over groups.
fn linear_group_by_key<F, K>(&self, func: F) -> LinearGroupByKey<T, F>
where F: FnMut(&T) -> K,
K: PartialEq;
/// Returns an iterator on slice groups using the *linear search* method.
fn linear_group_by<P>(&self, predicate: P) -> LinearGroupBy<T, P>
where P: FnMut(&T, &T) -> bool;
/// Returns an iterator on slice groups based on the [`PartialEq::eq`] method of `T`,
/// it uses *linear search* to iterate over groups.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#tymethod.eq
fn linear_group(&self) -> LinearGroup<T>
where T: PartialEq;
/// Returns an iterator on slice groups based that will use the given function to generate keys
/// and determine groups based on them. It uses *binary search* to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn binary_group_by_key<F, K>(&self, func: F) -> BinaryGroupByKey<T, F>
where F: FnMut(&T) -> K,
K: PartialEq;
/// Returns an iterator on slice groups using the *binary search* method.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn binary_group_by<P>(&self, predicate: P) -> BinaryGroupBy<T, P>
where P: FnMut(&T, &T) -> bool;
/// Returns an iterator on slice groups based on the [`PartialEq::eq`] method of `T`,
/// it uses *binary search* to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#tymethod.eq
fn binary_group(&self) -> BinaryGroup<T>
where T: PartialEq;
/// Returns an iterator on slice groups based that will use the given function to generate keys
/// and determine groups based on them. It uses *exponential search* to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn exponential_group_by_key<F, K>(&self, func: F) -> ExponentialGroupByKey<T, F>
where F: Fn(&T) -> K,
K: PartialEq;
/// Returns an iterator on slice groups using the *exponential search* method.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn exponential_group_by<P>(&self, predicate: P) -> ExponentialGroupBy<T, P>
where P: FnMut(&T, &T) -> bool;
/// Returns an iterator on slice groups based on the [`PartialEq::eq`] method of `T`,
/// it uses *exponential search* to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#tymethod.eq
fn exponential_group(&self) -> ExponentialGroup<T>
where T: PartialEq;
}
/// A convenient trait to construct an iterator returning non-overlapping *mutable*
/// groups defined by a predicate.
pub trait GroupByMut<T>
{
/// Returns an iterator on *mutable* slice groups based that will use the given function
/// to generate keys and determine groups based on them. It uses *linear search*
/// to iterate over groups.
fn linear_group_by_key_mut<F, K>(&mut self, func: F) -> LinearGroupByKeyMut<T, F>
where F: FnMut(&T) -> K,
K: PartialEq;
/// Returns an iterator on *mutable* slice groups using the *linear search* method.
fn linear_group_by_mut<P>(&mut self, predicate: P) -> LinearGroupByMut<T, P>
where P: FnMut(&T, &T) -> bool;
/// Returns an iterator on *mutable* slice groups based on the [`PartialEq::eq`] method of `T`,
/// it uses *linear search* to iterate over groups.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#tymethod.eq
fn linear_group_mut(&mut self) -> LinearGroupMut<T>
where T: PartialEq;
/// Returns an iterator on *mutable* slice groups based that will use the given function
/// to generate keys and determine groups based on them. It uses *binary search*
/// to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn binary_group_by_key_mut<F, K>(&mut self, func: F) -> BinaryGroupByKeyMut<T, F>
where F: FnMut(&T) -> K,
K: PartialEq;
/// Returns an iterator on *mutable* slice groups using the *binary search* method.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn binary_group_by_mut<P>(&mut self, predicate: P) -> BinaryGroupByMut<T, P>
where P: FnMut(&T, &T) -> bool;
/// Returns an iterator on *mutable* slice groups based on the [`PartialEq::eq`] method of `T`,
/// it uses *binary search* to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#tymethod.eq
fn binary_group_mut(&mut self) -> BinaryGroupMut<T>
where T: PartialEq;
/// Returns an iterator on *mutable* slice groups based that will use the given function
/// to generate keys and determine groups based on them. It uses *exponential search*
/// to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn exponential_group_by_key_mut<F, K>(&mut self, func: F) -> ExponentialGroupByKeyMut<T, F>
where F: Fn(&T) -> K,
K: PartialEq;
/// Returns an iterator on *mutable* slice groups using the *exponential search* method.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
fn exponential_group_by_mut<P>(&mut self, predicate: P) -> ExponentialGroupByMut<T, P>
where P: FnMut(&T, &T) -> bool;
/// Returns an iterator on *mutable* slice groups based on the [`PartialEq::eq`] method of `T`,
/// it uses *exponential search* to iterate over groups.
///
/// The predicate function should implement an order consistent with
/// the sort order of the slice.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#tymethod.eq
fn exponential_group_mut(&mut self) -> ExponentialGroupMut<T>
where T: PartialEq;
}
impl<T> GroupBy<T> for [T]
{
fn linear_group_by_key<F, K>(&self, func: F) -> LinearGroupByKey<T, F>
where F: FnMut(&T) -> K,
K: PartialEq
{
LinearGroupByKey::new(self, func)
}
fn linear_group_by<P>(&self, predicate: P) -> LinearGroupBy<T, P>
where P: FnMut(&T, &T) -> bool,
{
LinearGroupBy::new(self, predicate)
}
fn linear_group(&self) -> LinearGroup<T>
where T: PartialEq,
{
LinearGroup::new(self)
}
fn binary_group_by_key<F, K>(&self, func: F) -> BinaryGroupByKey<T, F>
where F: FnMut(&T) -> K,
K: PartialEq
{
BinaryGroupByKey::new(self, func)
}
fn binary_group_by<P>(&self, predicate: P) -> BinaryGroupBy<T, P>
where P: FnMut(&T, &T) -> bool,
{
BinaryGroupBy::new(self, predicate)
}
fn binary_group(&self) -> BinaryGroup<T>
where T: PartialEq,
{
BinaryGroup::new(self)
}
fn exponential_group_by_key<F, K>(&self, func: F) -> ExponentialGroupByKey<T, F>
where F: Fn(&T) -> K,
K: PartialEq
{
ExponentialGroupByKey::new(self, func)
}
fn exponential_group_by<P>(&self, predicate: P) -> ExponentialGroupBy<T, P>
where P: FnMut(&T, &T) -> bool,
{
ExponentialGroupBy::new(self, predicate)
}
fn exponential_group(&self) -> ExponentialGroup<T>
where T: PartialEq,
{
ExponentialGroup::new(self)
}
}
impl<T> GroupByMut<T> for [T]
{
fn linear_group_by_key_mut<F, K>(&mut self, func: F) -> LinearGroupByKeyMut<T, F>
where F: FnMut(&T) -> K,
K: PartialEq
{
LinearGroupByKeyMut::new(self, func)
}
fn linear_group_by_mut<P>(&mut self, predicate: P) -> LinearGroupByMut<T, P>
where P: FnMut(&T, &T) -> bool,
{
LinearGroupByMut::new(self, predicate)
}
fn linear_group_mut(&mut self) -> LinearGroupMut<T>
where T: PartialEq,
{
LinearGroupMut::new(self)
}
fn binary_group_by_key_mut<F, K>(&mut self, func: F) -> BinaryGroupByKeyMut<T, F>
where F: FnMut(&T) -> K,
K: PartialEq
{
BinaryGroupByKeyMut::new(self, func)
}
fn binary_group_by_mut<P>(&mut self, predicate: P) -> BinaryGroupByMut<T, P>
where P: FnMut(&T, &T) -> bool,
{
BinaryGroupByMut::new(self, predicate)
}
fn binary_group_mut(&mut self) -> BinaryGroupMut<T>
where T: PartialEq,
{
BinaryGroupMut::new(self)
}
fn exponential_group_by_key_mut<F, K>(&mut self, func: F) -> ExponentialGroupByKeyMut<T, F>
where F: Fn(&T) -> K,
K: PartialEq
{
ExponentialGroupByKeyMut::new(self, func)
}
fn exponential_group_by_mut<P>(&mut self, predicate: P) -> ExponentialGroupByMut<T, P>
where P: FnMut(&T, &T) -> bool,
{
ExponentialGroupByMut::new(self, predicate)
}
fn exponential_group_mut(&mut self) -> ExponentialGroupMut<T>
where T: PartialEq,
{
ExponentialGroupMut::new(self)
}
}
/// A convenient trait to construct an iterator returning non-overlapping `str` slices
/// defined by a predicate.
pub trait StrGroupBy
{
/// Returns an iterator on `str` groups based that will use the given function
/// to generate keys and determine groups based on them. It uses *linear search*
/// to iterate over groups.
fn linear_group_by_key<F, K>(&self, func: F) -> LinearStrGroupByKey<F>
where F: FnMut(char) -> K,
K: PartialEq;
/// Returns an iterator on `str` groups using the *linear search* method.
fn linear_group_by<P>(&self, predicate: P) -> LinearStrGroupBy<P>
where P: FnMut(char, char) -> bool;
/// Returns an iterator on `str` groups based on the [`PartialEq::eq`] method of `char`,
/// it uses *linear search* to iterate over groups.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/primitive.char.html#impl-PartialEq%3Cchar%3E
fn linear_group(&self) -> LinearStrGroup;
}
/// A convenient trait to construct an iterator returning non-overlapping *mutable* `str` slices
/// defined by a predicate.
pub trait StrGroupByMut
{
/// Returns an iterator on *mutable* `str` groups based that will use the given function
/// to generate keys and determine groups based on them. It uses *linear search*
/// to iterate over groups.
fn linear_group_by_key_mut<F, K>(&mut self, func: F) -> LinearStrGroupByKeyMut<F>
where F: FnMut(char) -> K,
K: PartialEq;
/// Returns an iterator on *mutable* `str` groups using the *linear search* method.
fn linear_group_by_mut<P>(&mut self, predicate: P) -> LinearStrGroupByMut<P>
where P: FnMut(char, char) -> bool;
/// Returns an iterator on *mutable* `str` groups based on the [`PartialEq::eq`] method of `char`,
/// it uses *linear search* to iterate over groups.
///
/// [`PartialEq::eq`]: https://doc.rust-lang.org/std/primitive.char.html#impl-PartialEq%3Cchar%3E
fn linear_group_mut(&mut self) -> LinearStrGroupMut;
}
impl StrGroupBy for str
{
fn linear_group_by_key<F, K>(&self, func: F) -> LinearStrGroupByKey<F>
where F: FnMut(char) -> K,
K: PartialEq
{
LinearStrGroupByKey::new(self, func)
}
fn linear_group_by<P>(&self, predicate: P) -> LinearStrGroupBy<P>
where P: FnMut(char, char) -> bool,
{
LinearStrGroupBy::new(self, predicate)
}
fn linear_group(&self) -> LinearStrGroup {
LinearStrGroup::new(self)
}
}
impl StrGroupByMut for str
{
fn linear_group_by_key_mut<F, K>(&mut self, func: F) -> LinearStrGroupByKeyMut<F>
where F: FnMut(char) -> K,
K: PartialEq
{
LinearStrGroupByKeyMut::new(self, func)
}
fn linear_group_by_mut<P>(&mut self, predicate: P) -> LinearStrGroupByMut<P>
where P: FnMut(char, char) -> bool,
{
LinearStrGroupByMut::new(self, predicate)
}
fn linear_group_mut(&mut self) -> LinearStrGroupMut {
LinearStrGroupMut::new(self)
}
}