1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use std::slice::{from_raw_parts, from_raw_parts_mut};
use std::{fmt, marker};
use crate::offset_from;

macro_rules! group_by_key {
    (struct $name:ident, $elem:ty, $mkslice:ident) => {
        impl<'a, T: 'a, P> $name<'a, T, P> {
            #[inline]
            pub fn is_empty(&self) -> bool {
                self.ptr == self.end
            }

            #[inline]
            pub fn remainder_len(&self) -> usize {
                unsafe { offset_from(self.end, self.ptr) }
            }
        }

        impl<'a, T: 'a, F, K> std::iter::Iterator for $name<'a, T, F>
        where F: FnMut(&T) -> K,
              K: PartialEq,
        {
            type Item = $elem;

            fn next(&mut self) -> Option<Self::Item> {
                if self.is_empty() { return None }

                let mut i = 0;
                let mut ptr = self.ptr;

                // we use an unsafe block to avoid bounds checking here.
                // this is safe because the only thing we do here is to get
                // two elements at `ptr` and `ptr + 1`, bounds checking is done by hand.

                // we need to get *two* contiguous elements so we check that:
                //  - the first element is at the `end - 1` position because
                //  - the second one will be read from `ptr + 1` that must
                //    be lower or equal to `end`
                unsafe {
                    while ptr != self.end.sub(1) {
                        let a = &*ptr;
                        ptr = ptr.add(1);
                        let b = &*ptr;

                        i += 1;

                        if (self.func)(a) != (self.func)(b) {
                            let slice = $mkslice(self.ptr, i);
                            self.ptr = ptr;
                            return Some(slice)
                        }
                    }
                }

                // `i` is either `0` or the `slice length - 1` because either:
                //  - we have not entered the loop and so `i` is equal to `0`
                //    the slice length is necessarily `1` because we ensure it is not empty
                //  - we have entered the loop and we have not early returned
                //    so `i` is equal to the slice `length - 1`
                let slice = unsafe { $mkslice(self.ptr, i + 1) };
                self.ptr = self.end;
                Some(slice)
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                if self.is_empty() { return (0, Some(0)) }

                let len = self.remainder_len();
                (1, Some(len))
            }

            fn last(mut self) -> Option<Self::Item> {
                self.next_back()
            }
        }

        impl<'a, T: 'a, F, K> std::iter::DoubleEndedIterator for $name<'a, T, F>
        where F: FnMut(&T) -> K,
              K: PartialEq,
        {
            fn next_back(&mut self) -> Option<Self::Item> {
                // during the loop we retrieve two elements at `ptr` and `ptr - 1`.
                if self.is_empty() { return None }

                let mut i = 0;

                unsafe {
                    // we ensure that the first element that will be read
                    // is not under `end` because `end` is out of bound.
                    let mut ptr = self.end.sub(1);

                    while ptr != self.ptr {
                        // we first get `a` that is at the left of `ptr`
                        // then `b` that is under the `ptr` position.
                        let a = &*ptr.sub(1);
                        let b = &*ptr;

                        i += 1;

                        if (self.func)(a) != (self.func)(b) {
                            // the slice to return starts at the `ptr` position
                            // and `i` is the length of it.
                            let slice = $mkslice(ptr, i);

                            // because `end` is always an invalid bound
                            // we use `ptr` as `end` for the future call to `next`.
                            self.end = ptr;
                            return Some(slice)
                        }

                        ptr = ptr.sub(1);
                    }
                }

                let slice = unsafe { $mkslice(self.ptr, i + 1) };
                self.ptr = self.end;
                Some(slice)
            }
        }

        impl<'a, T: 'a, F, K> std::iter::FusedIterator for $name<'a, T, F>
        where F: FnMut(&T) -> K,
              K: PartialEq,
        { }
    }
}

/// An iterator that will return non-overlapping groups of equal elements
/// in the slice using *linear/sequential search*.
///
/// It will give an element to the given function, producing a key and comparing
/// the keys to determine groups.
pub struct LinearGroupByKey<'a, T: 'a, F> {
    ptr: *const T,
    end: *const T,
    func: F,
    _phantom: marker::PhantomData<&'a T>,
}

impl<'a, T, F> LinearGroupByKey<'a, T, F> {
    pub fn new(slice: &'a [T], func: F) -> Self {
        LinearGroupByKey {
            ptr: slice.as_ptr(),
            end: unsafe { slice.as_ptr().add(slice.len()) },
            func,
            _phantom: marker::PhantomData,
        }
    }
}

impl<'a, T: 'a, F> LinearGroupByKey<'a, T, F> {
    /// Returns the remainder of the original slice that is going to be
    /// returned by the iterator.
    pub fn remainder(&self) -> &[T] {
        let len = self.remainder_len();
        unsafe { from_raw_parts(self.ptr, len) }
    }
}

impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for LinearGroupByKey<'a, T, P> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("LinearGroupByKey")
            .field("remainder", &self.remainder())
            .finish()
    }
}

group_by_key!{ struct LinearGroupByKey, &'a [T], from_raw_parts }


/// An iterator that will return non-overlapping *mutable* groups in the slice
/// using *linear/sequential search*.
///
/// It will give an element to the given function, producing a key and comparing
/// the keys to determine groups.
pub struct LinearGroupByKeyMut<'a, T: 'a, F> {
    ptr: *mut T,
    end: *mut T,
    func: F,
    _phantom: marker::PhantomData<&'a mut T>,
}

impl<'a, T, F> LinearGroupByKeyMut<'a, T, F> {
    pub fn new(slice: &'a mut [T], func: F) -> Self {
        LinearGroupByKeyMut {
            ptr: slice.as_mut_ptr(),
            end: unsafe { slice.as_mut_ptr().add(slice.len()) },
            func,
            _phantom: marker::PhantomData,
        }
    }
}

impl<'a, T: 'a, F> LinearGroupByKeyMut<'a, T, F> {
    /// Returns the remainder of the original slice that is going to be
    /// returned by the iterator.
    pub fn into_remainder(self) -> &'a mut [T] {
        let len = self.remainder_len();
        unsafe { from_raw_parts_mut(self.ptr, len) }
    }
}

impl<'a, T: 'a + fmt::Debug, F> fmt::Debug for LinearGroupByKeyMut<'a, T, F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let len = self.remainder_len();
        let remainder = unsafe { from_raw_parts(self.ptr, len) };

        f.debug_struct("LinearGroupByKeyMut")
            .field("remainder", &remainder)
            .finish()
    }
}

group_by_key!{ struct LinearGroupByKeyMut, &'a mut [T], from_raw_parts_mut }