1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// This file is part of Substrate.

// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Implements tree backend, cached header metadata and algorithms
//! to compute routes efficiently over the tree of headers.

use lru::LruCache;
use parking_lot::RwLock;
use sp_runtime::traits::{Block as BlockT, Header, NumberFor, One};

/// Set to the expected max difference between `best` and `finalized` blocks at sync.
const LRU_CACHE_SIZE: usize = 5_000;

/// Get lowest common ancestor between two blocks in the tree.
///
/// This implementation is efficient because our trees have very few and
/// small branches, and because of our current query pattern:
/// lca(best, final), lca(best + 1, final), lca(best + 2, final), etc.
/// The first call is O(h) but the others are O(1).
pub fn lowest_common_ancestor<Block: BlockT, T: HeaderMetadata<Block> + ?Sized>(
	backend: &T,
	id_one: Block::Hash,
	id_two: Block::Hash,
) -> Result<HashAndNumber<Block>, T::Error> {
	let mut header_one = backend.header_metadata(id_one)?;
	if header_one.parent == id_two {
		return Ok(HashAndNumber { hash: id_two, number: header_one.number - One::one() })
	}

	let mut header_two = backend.header_metadata(id_two)?;
	if header_two.parent == id_one {
		return Ok(HashAndNumber { hash: id_one, number: header_one.number })
	}

	let mut orig_header_one = header_one.clone();
	let mut orig_header_two = header_two.clone();

	// We move through ancestor links as much as possible, since ancestor >= parent.

	while header_one.number > header_two.number {
		let ancestor_one = backend.header_metadata(header_one.ancestor)?;

		if ancestor_one.number >= header_two.number {
			header_one = ancestor_one;
		} else {
			break
		}
	}

	while header_one.number < header_two.number {
		let ancestor_two = backend.header_metadata(header_two.ancestor)?;

		if ancestor_two.number >= header_one.number {
			header_two = ancestor_two;
		} else {
			break
		}
	}

	// Then we move the remaining path using parent links.

	while header_one.hash != header_two.hash {
		if header_one.number > header_two.number {
			header_one = backend.header_metadata(header_one.parent)?;
		} else {
			header_two = backend.header_metadata(header_two.parent)?;
		}
	}

	// Update cached ancestor links.

	if orig_header_one.number > header_one.number {
		orig_header_one.ancestor = header_one.hash;
		backend.insert_header_metadata(orig_header_one.hash, orig_header_one);
	}

	if orig_header_two.number > header_one.number {
		orig_header_two.ancestor = header_one.hash;
		backend.insert_header_metadata(orig_header_two.hash, orig_header_two);
	}

	Ok(HashAndNumber { hash: header_one.hash, number: header_one.number })
}

/// Compute a tree-route between two blocks. See tree-route docs for more details.
pub fn tree_route<Block: BlockT, T: HeaderMetadata<Block>>(
	backend: &T,
	from: Block::Hash,
	to: Block::Hash,
) -> Result<TreeRoute<Block>, T::Error> {
	let mut from = backend.header_metadata(from)?;
	let mut to = backend.header_metadata(to)?;

	let mut from_branch = Vec::new();
	let mut to_branch = Vec::new();

	while to.number > from.number {
		to_branch.push(HashAndNumber { number: to.number, hash: to.hash });

		to = backend.header_metadata(to.parent)?;
	}

	while from.number > to.number {
		from_branch.push(HashAndNumber { number: from.number, hash: from.hash });
		from = backend.header_metadata(from.parent)?;
	}

	// numbers are equal now. walk backwards until the block is the same

	while to.hash != from.hash {
		to_branch.push(HashAndNumber { number: to.number, hash: to.hash });
		to = backend.header_metadata(to.parent)?;

		from_branch.push(HashAndNumber { number: from.number, hash: from.hash });
		from = backend.header_metadata(from.parent)?;
	}

	// add the pivot block. and append the reversed to-branch
	// (note that it's reverse order originals)
	let pivot = from_branch.len();
	from_branch.push(HashAndNumber { number: to.number, hash: to.hash });
	from_branch.extend(to_branch.into_iter().rev());

	Ok(TreeRoute { route: from_branch, pivot })
}

/// Hash and number of a block.
#[derive(Debug, Clone)]
pub struct HashAndNumber<Block: BlockT> {
	/// The number of the block.
	pub number: NumberFor<Block>,
	/// The hash of the block.
	pub hash: Block::Hash,
}

/// A tree-route from one block to another in the chain.
///
/// All blocks prior to the pivot in the deque is the reverse-order unique ancestry
/// of the first block, the block at the pivot index is the common ancestor,
/// and all blocks after the pivot is the ancestry of the second block, in
/// order.
///
/// The ancestry sets will include the given blocks, and thus the tree-route is
/// never empty.
///
/// ```text
/// Tree route from R1 to E2. Retracted is [R1, R2, R3], Common is C, enacted [E1, E2]
///   <- R3 <- R2 <- R1
///  /
/// C
///  \-> E1 -> E2
/// ```
///
/// ```text
/// Tree route from C to E2. Retracted empty. Common is C, enacted [E1, E2]
/// C -> E1 -> E2
/// ```
#[derive(Debug, Clone)]
pub struct TreeRoute<Block: BlockT> {
	route: Vec<HashAndNumber<Block>>,
	pivot: usize,
}

impl<Block: BlockT> TreeRoute<Block> {
	/// Get a slice of all retracted blocks in reverse order (towards common ancestor).
	pub fn retracted(&self) -> &[HashAndNumber<Block>] {
		&self.route[..self.pivot]
	}

	/// Convert into all retracted blocks in reverse order (towards common ancestor).
	pub fn into_retracted(mut self) -> Vec<HashAndNumber<Block>> {
		self.route.truncate(self.pivot);
		self.route
	}

	/// Get the common ancestor block. This might be one of the two blocks of the
	/// route.
	pub fn common_block(&self) -> &HashAndNumber<Block> {
		self.route.get(self.pivot).expect(
			"tree-routes are computed between blocks; \
			which are included in the route; \
			thus it is never empty; qed",
		)
	}

	/// Get a slice of enacted blocks (descendents of the common ancestor)
	pub fn enacted(&self) -> &[HashAndNumber<Block>] {
		&self.route[self.pivot + 1..]
	}

	/// Returns the last block.
	pub fn last(&self) -> Option<&HashAndNumber<Block>> {
		self.route.last()
	}
}

/// Handles header metadata: hash, number, parent hash, etc.
pub trait HeaderMetadata<Block: BlockT> {
	/// Error used in case the header metadata is not found.
	type Error: std::error::Error;

	fn header_metadata(
		&self,
		hash: Block::Hash,
	) -> Result<CachedHeaderMetadata<Block>, Self::Error>;
	fn insert_header_metadata(
		&self,
		hash: Block::Hash,
		header_metadata: CachedHeaderMetadata<Block>,
	);
	fn remove_header_metadata(&self, hash: Block::Hash);
}

/// Caches header metadata in an in-memory LRU cache.
pub struct HeaderMetadataCache<Block: BlockT> {
	cache: RwLock<LruCache<Block::Hash, CachedHeaderMetadata<Block>>>,
}

impl<Block: BlockT> HeaderMetadataCache<Block> {
	/// Creates a new LRU header metadata cache with `capacity`.
	pub fn new(capacity: usize) -> Self {
		HeaderMetadataCache { cache: RwLock::new(LruCache::new(capacity)) }
	}
}

impl<Block: BlockT> Default for HeaderMetadataCache<Block> {
	fn default() -> Self {
		HeaderMetadataCache { cache: RwLock::new(LruCache::new(LRU_CACHE_SIZE)) }
	}
}

impl<Block: BlockT> HeaderMetadataCache<Block> {
	pub fn header_metadata(&self, hash: Block::Hash) -> Option<CachedHeaderMetadata<Block>> {
		self.cache.write().get(&hash).cloned()
	}

	pub fn insert_header_metadata(&self, hash: Block::Hash, metadata: CachedHeaderMetadata<Block>) {
		self.cache.write().put(hash, metadata);
	}

	pub fn remove_header_metadata(&self, hash: Block::Hash) {
		self.cache.write().pop(&hash);
	}
}

/// Cached header metadata. Used to efficiently traverse the tree.
#[derive(Debug, Clone)]
pub struct CachedHeaderMetadata<Block: BlockT> {
	/// Hash of the header.
	pub hash: Block::Hash,
	/// Block number.
	pub number: NumberFor<Block>,
	/// Hash of parent header.
	pub parent: Block::Hash,
	/// Block state root.
	pub state_root: Block::Hash,
	/// Hash of an ancestor header. Used to jump through the tree.
	ancestor: Block::Hash,
}

impl<Block: BlockT> From<&Block::Header> for CachedHeaderMetadata<Block> {
	fn from(header: &Block::Header) -> Self {
		CachedHeaderMetadata {
			hash: header.hash(),
			number: *header.number(),
			parent: *header.parent_hash(),
			state_root: *header.state_root(),
			ancestor: *header.parent_hash(),
		}
	}
}