1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
// This file is part of Substrate.

// Copyright (C) 2017-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Simple ECDSA secp256k1 API.

use codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;
use sp_runtime_interface::pass_by::PassByInner;

#[cfg(feature = "std")]
use crate::crypto::Ss58Codec;
use crate::crypto::{
	ByteArray, CryptoType, CryptoTypeId, CryptoTypePublicPair, Derive, Public as TraitPublic,
	UncheckedFrom,
};
#[cfg(feature = "full_crypto")]
use crate::{
	crypto::{DeriveJunction, Pair as TraitPair, SecretStringError},
	hashing::blake2_256,
};
#[cfg(feature = "std")]
use bip39::{Language, Mnemonic, MnemonicType};
#[cfg(all(feature = "full_crypto", not(feature = "std")))]
use secp256k1::Secp256k1;
#[cfg(feature = "std")]
use secp256k1::SECP256K1;
#[cfg(feature = "full_crypto")]
use secp256k1::{
	ecdsa::{RecoverableSignature, RecoveryId},
	Message, PublicKey, SecretKey,
};
#[cfg(feature = "std")]
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "full_crypto")]
use sp_std::vec::Vec;

/// An identifier used to match public keys against ecdsa keys
pub const CRYPTO_ID: CryptoTypeId = CryptoTypeId(*b"ecds");

/// A secret seed (which is bytewise essentially equivalent to a SecretKey).
///
/// We need it as a different type because `Seed` is expected to be AsRef<[u8]>.
#[cfg(feature = "full_crypto")]
type Seed = [u8; 32];

/// The ECDSA compressed public key.
#[cfg_attr(feature = "full_crypto", derive(Hash))]
#[derive(
	Clone,
	Copy,
	Encode,
	Decode,
	PassByInner,
	MaxEncodedLen,
	TypeInfo,
	Eq,
	PartialEq,
	PartialOrd,
	Ord,
)]
pub struct Public(pub [u8; 33]);

impl Public {
	/// A new instance from the given 33-byte `data`.
	///
	/// NOTE: No checking goes on to ensure this is a real public key. Only use it if
	/// you are certain that the array actually is a pubkey. GIGO!
	pub fn from_raw(data: [u8; 33]) -> Self {
		Self(data)
	}

	/// Create a new instance from the given full public key.
	///
	/// This will convert the full public key into the compressed format.
	#[cfg(feature = "std")]
	pub fn from_full(full: &[u8]) -> Result<Self, ()> {
		let pubkey = if full.len() == 64 {
			// Tag it as uncompressed public key.
			let mut tagged_full = [0u8; 65];
			tagged_full[0] = 0x04;
			tagged_full[1..].copy_from_slice(full);
			secp256k1::PublicKey::from_slice(&tagged_full)
		} else {
			secp256k1::PublicKey::from_slice(full)
		};
		pubkey.map(|k| Self(k.serialize())).map_err(|_| ())
	}
}

impl ByteArray for Public {
	const LEN: usize = 33;
}

impl TraitPublic for Public {
	fn to_public_crypto_pair(&self) -> CryptoTypePublicPair {
		CryptoTypePublicPair(CRYPTO_ID, self.to_raw_vec())
	}
}

impl From<Public> for CryptoTypePublicPair {
	fn from(key: Public) -> Self {
		(&key).into()
	}
}

impl From<&Public> for CryptoTypePublicPair {
	fn from(key: &Public) -> Self {
		CryptoTypePublicPair(CRYPTO_ID, key.to_raw_vec())
	}
}

impl Derive for Public {}

impl AsRef<[u8]> for Public {
	fn as_ref(&self) -> &[u8] {
		&self.0[..]
	}
}

impl AsMut<[u8]> for Public {
	fn as_mut(&mut self) -> &mut [u8] {
		&mut self.0[..]
	}
}

impl TryFrom<&[u8]> for Public {
	type Error = ();

	fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
		if data.len() != Self::LEN {
			return Err(())
		}
		let mut r = [0u8; Self::LEN];
		r.copy_from_slice(data);
		Ok(Self::unchecked_from(r))
	}
}

#[cfg(feature = "full_crypto")]
impl From<Pair> for Public {
	fn from(x: Pair) -> Self {
		x.public()
	}
}

impl UncheckedFrom<[u8; 33]> for Public {
	fn unchecked_from(x: [u8; 33]) -> Self {
		Public(x)
	}
}

#[cfg(feature = "std")]
impl std::fmt::Display for Public {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		write!(f, "{}", self.to_ss58check())
	}
}

impl sp_std::fmt::Debug for Public {
	#[cfg(feature = "std")]
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		let s = self.to_ss58check();
		write!(f, "{} ({}...)", crate::hexdisplay::HexDisplay::from(&self.as_ref()), &s[0..8])
	}

	#[cfg(not(feature = "std"))]
	fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
		Ok(())
	}
}

#[cfg(feature = "std")]
impl Serialize for Public {
	fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
	where
		S: Serializer,
	{
		serializer.serialize_str(&self.to_ss58check())
	}
}

#[cfg(feature = "std")]
impl<'de> Deserialize<'de> for Public {
	fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
	where
		D: Deserializer<'de>,
	{
		Public::from_ss58check(&String::deserialize(deserializer)?)
			.map_err(|e| de::Error::custom(format!("{:?}", e)))
	}
}

/// A signature (a 512-bit value, plus 8 bits for recovery ID).
#[cfg_attr(feature = "full_crypto", derive(Hash))]
#[derive(Encode, Decode, MaxEncodedLen, PassByInner, TypeInfo, PartialEq, Eq)]
pub struct Signature(pub [u8; 65]);

impl TryFrom<&[u8]> for Signature {
	type Error = ();

	fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
		if data.len() == 65 {
			let mut inner = [0u8; 65];
			inner.copy_from_slice(data);
			Ok(Signature(inner))
		} else {
			Err(())
		}
	}
}

#[cfg(feature = "std")]
impl Serialize for Signature {
	fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
	where
		S: Serializer,
	{
		serializer.serialize_str(&hex::encode(self))
	}
}

#[cfg(feature = "std")]
impl<'de> Deserialize<'de> for Signature {
	fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
	where
		D: Deserializer<'de>,
	{
		let signature_hex = hex::decode(&String::deserialize(deserializer)?)
			.map_err(|e| de::Error::custom(format!("{:?}", e)))?;
		Signature::try_from(signature_hex.as_ref())
			.map_err(|e| de::Error::custom(format!("{:?}", e)))
	}
}

impl Clone for Signature {
	fn clone(&self) -> Self {
		let mut r = [0u8; 65];
		r.copy_from_slice(&self.0[..]);
		Signature(r)
	}
}

impl Default for Signature {
	fn default() -> Self {
		Signature([0u8; 65])
	}
}

impl From<Signature> for [u8; 65] {
	fn from(v: Signature) -> [u8; 65] {
		v.0
	}
}

impl AsRef<[u8; 65]> for Signature {
	fn as_ref(&self) -> &[u8; 65] {
		&self.0
	}
}

impl AsRef<[u8]> for Signature {
	fn as_ref(&self) -> &[u8] {
		&self.0[..]
	}
}

impl AsMut<[u8]> for Signature {
	fn as_mut(&mut self) -> &mut [u8] {
		&mut self.0[..]
	}
}

impl sp_std::fmt::Debug for Signature {
	#[cfg(feature = "std")]
	fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
		write!(f, "{}", crate::hexdisplay::HexDisplay::from(&self.0))
	}

	#[cfg(not(feature = "std"))]
	fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
		Ok(())
	}
}

impl UncheckedFrom<[u8; 65]> for Signature {
	fn unchecked_from(data: [u8; 65]) -> Signature {
		Signature(data)
	}
}

impl Signature {
	/// A new instance from the given 65-byte `data`.
	///
	/// NOTE: No checking goes on to ensure this is a real signature. Only use it if
	/// you are certain that the array actually is a signature. GIGO!
	pub fn from_raw(data: [u8; 65]) -> Signature {
		Signature(data)
	}

	/// A new instance from the given slice that should be 65 bytes long.
	///
	/// NOTE: No checking goes on to ensure this is a real signature. Only use it if
	/// you are certain that the array actually is a signature. GIGO!
	pub fn from_slice(data: &[u8]) -> Option<Self> {
		if data.len() != 65 {
			return None
		}
		let mut r = [0u8; 65];
		r.copy_from_slice(data);
		Some(Signature(r))
	}

	/// Recover the public key from this signature and a message.
	#[cfg(feature = "full_crypto")]
	pub fn recover<M: AsRef<[u8]>>(&self, message: M) -> Option<Public> {
		self.recover_prehashed(&blake2_256(message.as_ref()))
	}

	/// Recover the public key from this signature and a pre-hashed message.
	#[cfg(feature = "full_crypto")]
	pub fn recover_prehashed(&self, message: &[u8; 32]) -> Option<Public> {
		let rid = RecoveryId::from_i32(self.0[64] as i32).ok()?;
		let sig = RecoverableSignature::from_compact(&self.0[..64], rid).ok()?;
		let message = Message::from_slice(message).expect("Message is 32 bytes; qed");

		#[cfg(feature = "std")]
		let context = SECP256K1;
		#[cfg(not(feature = "std"))]
		let context = Secp256k1::verification_only();

		context
			.recover_ecdsa(&message, &sig)
			.ok()
			.map(|pubkey| Public(pubkey.serialize()))
	}
}

#[cfg(feature = "full_crypto")]
impl From<RecoverableSignature> for Signature {
	fn from(recsig: RecoverableSignature) -> Signature {
		let mut r = Self::default();
		let (recid, sig) = recsig.serialize_compact();
		r.0[..64].copy_from_slice(&sig);
		// This is safe due to the limited range of possible valid ids.
		r.0[64] = recid.to_i32() as u8;
		r
	}
}

/// Derive a single hard junction.
#[cfg(feature = "full_crypto")]
fn derive_hard_junction(secret_seed: &Seed, cc: &[u8; 32]) -> Seed {
	("Secp256k1HDKD", secret_seed, cc).using_encoded(sp_core_hashing::blake2_256)
}

/// An error when deriving a key.
#[cfg(feature = "full_crypto")]
pub enum DeriveError {
	/// A soft key was found in the path (and is unsupported).
	SoftKeyInPath,
}

/// A key pair.
#[cfg(feature = "full_crypto")]
#[derive(Clone)]
pub struct Pair {
	public: Public,
	secret: SecretKey,
}

#[cfg(feature = "full_crypto")]
impl TraitPair for Pair {
	type Public = Public;
	type Seed = Seed;
	type Signature = Signature;
	type DeriveError = DeriveError;

	/// Generate new secure (random) key pair and provide the recovery phrase.
	///
	/// You can recover the same key later with `from_phrase`.
	#[cfg(feature = "std")]
	fn generate_with_phrase(password: Option<&str>) -> (Pair, String, Seed) {
		let mnemonic = Mnemonic::new(MnemonicType::Words12, Language::English);
		let phrase = mnemonic.phrase();
		let (pair, seed) = Self::from_phrase(phrase, password)
			.expect("All phrases generated by Mnemonic are valid; qed");
		(pair, phrase.to_owned(), seed)
	}

	/// Generate key pair from given recovery phrase and password.
	#[cfg(feature = "std")]
	fn from_phrase(
		phrase: &str,
		password: Option<&str>,
	) -> Result<(Pair, Seed), SecretStringError> {
		let big_seed = substrate_bip39::seed_from_entropy(
			Mnemonic::from_phrase(phrase, Language::English)
				.map_err(|_| SecretStringError::InvalidPhrase)?
				.entropy(),
			password.unwrap_or(""),
		)
		.map_err(|_| SecretStringError::InvalidSeed)?;
		let mut seed = Seed::default();
		seed.copy_from_slice(&big_seed[0..32]);
		Self::from_seed_slice(&big_seed[0..32]).map(|x| (x, seed))
	}

	/// Make a new key pair from secret seed material.
	///
	/// You should never need to use this; generate(), generate_with_phrase
	fn from_seed(seed: &Seed) -> Pair {
		Self::from_seed_slice(&seed[..]).expect("seed has valid length; qed")
	}

	/// Make a new key pair from secret seed material. The slice must be 32 bytes long or it
	/// will return `None`.
	///
	/// You should never need to use this; generate(), generate_with_phrase
	fn from_seed_slice(seed_slice: &[u8]) -> Result<Pair, SecretStringError> {
		let secret =
			SecretKey::from_slice(seed_slice).map_err(|_| SecretStringError::InvalidSeedLength)?;

		#[cfg(feature = "std")]
		let context = SECP256K1;
		#[cfg(not(feature = "std"))]
		let context = Secp256k1::signing_only();

		let public = PublicKey::from_secret_key(&context, &secret);
		let public = Public(public.serialize());
		Ok(Pair { public, secret })
	}

	/// Derive a child key from a series of given junctions.
	fn derive<Iter: Iterator<Item = DeriveJunction>>(
		&self,
		path: Iter,
		_seed: Option<Seed>,
	) -> Result<(Pair, Option<Seed>), DeriveError> {
		let mut acc = self.seed();
		for j in path {
			match j {
				DeriveJunction::Soft(_cc) => return Err(DeriveError::SoftKeyInPath),
				DeriveJunction::Hard(cc) => acc = derive_hard_junction(&acc, &cc),
			}
		}
		Ok((Self::from_seed(&acc), Some(acc)))
	}

	/// Get the public key.
	fn public(&self) -> Public {
		self.public
	}

	/// Sign a message.
	fn sign(&self, message: &[u8]) -> Signature {
		self.sign_prehashed(&blake2_256(message))
	}

	/// Verify a signature on a message. Returns true if the signature is good.
	fn verify<M: AsRef<[u8]>>(sig: &Self::Signature, message: M, pubkey: &Self::Public) -> bool {
		match sig.recover(message) {
			Some(actual) => actual == *pubkey,
			None => false,
		}
	}

	/// Verify a signature on a message. Returns true if the signature is good.
	///
	/// This doesn't use the type system to ensure that `sig` and `pubkey` are the correct
	/// size. Use it only if you're coming from byte buffers and need the speed.
	fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(sig: &[u8], message: M, pubkey: P) -> bool {
		match Signature::from_slice(sig).and_then(|sig| sig.recover(message)) {
			Some(actual) => actual.as_ref() == pubkey.as_ref(),
			None => false,
		}
	}

	/// Return a vec filled with raw data.
	fn to_raw_vec(&self) -> Vec<u8> {
		self.seed().to_vec()
	}
}

#[cfg(feature = "full_crypto")]
impl Pair {
	/// Get the seed for this key.
	pub fn seed(&self) -> Seed {
		self.secret.secret_bytes()
	}

	/// Exactly as `from_string` except that if no matches are found then, the the first 32
	/// characters are taken (padded with spaces as necessary) and used as the MiniSecretKey.
	#[cfg(feature = "std")]
	pub fn from_legacy_string(s: &str, password_override: Option<&str>) -> Pair {
		Self::from_string(s, password_override).unwrap_or_else(|_| {
			let mut padded_seed: Seed = [b' '; 32];
			let len = s.len().min(32);
			padded_seed[..len].copy_from_slice(&s.as_bytes()[..len]);
			Self::from_seed(&padded_seed)
		})
	}

	/// Sign a pre-hashed message
	pub fn sign_prehashed(&self, message: &[u8; 32]) -> Signature {
		let message = Message::from_slice(message).expect("Message is 32 bytes; qed");

		#[cfg(feature = "std")]
		let context = SECP256K1;
		#[cfg(not(feature = "std"))]
		let context = Secp256k1::signing_only();

		context.sign_ecdsa_recoverable(&message, &self.secret).into()
	}

	/// Verify a signature on a pre-hashed message. Return `true` if the signature is valid
	/// and thus matches the given `public` key.
	pub fn verify_prehashed(sig: &Signature, message: &[u8; 32], public: &Public) -> bool {
		match sig.recover_prehashed(message) {
			Some(actual) => actual == *public,
			None => false,
		}
	}

	/// Verify a signature on a message. Returns true if the signature is good.
	/// Parses Signature using parse_overflowing_slice.
	#[deprecated(note = "please use `verify` instead")]
	pub fn verify_deprecated<M: AsRef<[u8]>>(sig: &Signature, message: M, pubkey: &Public) -> bool {
		let message = libsecp256k1::Message::parse(&blake2_256(message.as_ref()));

		let parse_signature_overflowing = |x: [u8; 65]| {
			let sig = libsecp256k1::Signature::parse_overflowing_slice(&x[..64]).ok()?;
			let rid = libsecp256k1::RecoveryId::parse(x[64]).ok()?;
			Some((sig, rid))
		};

		let (sig, rid) = match parse_signature_overflowing(sig.0) {
			Some(sigri) => sigri,
			_ => return false,
		};
		match libsecp256k1::recover(&message, &sig, &rid) {
			Ok(actual) => pubkey.0 == actual.serialize_compressed(),
			_ => false,
		}
	}
}

// The `secp256k1` backend doesn't implement cleanup for their private keys.
// Currently we should take care of wiping the secret from memory.
// NOTE: this solution is not effective when `Pair` is moved around memory.
// The very same problem affects other cryptographic backends that are just using
// `zeroize`for their secrets.
#[cfg(feature = "full_crypto")]
impl Drop for Pair {
	fn drop(&mut self) {
		let ptr = self.secret.as_mut_ptr();
		for off in 0..self.secret.len() {
			unsafe {
				core::ptr::write_volatile(ptr.add(off), 0);
			}
		}
	}
}

impl CryptoType for Public {
	#[cfg(feature = "full_crypto")]
	type Pair = Pair;
}

impl CryptoType for Signature {
	#[cfg(feature = "full_crypto")]
	type Pair = Pair;
}

#[cfg(feature = "full_crypto")]
impl CryptoType for Pair {
	type Pair = Pair;
}

#[cfg(test)]
mod test {
	use super::*;
	use crate::crypto::{
		set_default_ss58_version, PublicError, Ss58AddressFormat, Ss58AddressFormatRegistry,
		DEV_PHRASE,
	};
	use hex_literal::hex;
	use serde_json;

	#[test]
	fn default_phrase_should_be_used() {
		assert_eq!(
			Pair::from_string("//Alice///password", None).unwrap().public(),
			Pair::from_string(&format!("{}//Alice", DEV_PHRASE), Some("password"))
				.unwrap()
				.public(),
		);
	}

	#[test]
	fn seed_and_derive_should_work() {
		let seed = hex!("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60");
		let pair = Pair::from_seed(&seed);
		assert_eq!(pair.seed(), seed);
		let path = vec![DeriveJunction::Hard([0u8; 32])];
		let derived = pair.derive(path.into_iter(), None).ok().unwrap();
		assert_eq!(
			derived.0.seed(),
			hex!("b8eefc4937200a8382d00050e050ced2d4ab72cc2ef1b061477afb51564fdd61")
		);
	}

	#[test]
	fn test_vector_should_work() {
		let pair = Pair::from_seed(&hex!(
			"9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60"
		));
		let public = pair.public();
		assert_eq!(
			public,
			Public::from_full(
				&hex!("8db55b05db86c0b1786ca49f095d76344c9e6056b2f02701a7e7f3c20aabfd913ebbe148dd17c56551a52952371071a6c604b3f3abe8f2c8fa742158ea6dd7d4")[..],
			).unwrap(),
		);
		let message = b"";
		let signature = hex!("3dde91174bd9359027be59a428b8146513df80a2a3c7eda2194f64de04a69ab97b753169e94db6ffd50921a2668a48b94ca11e3d32c1ff19cfe88890aa7e8f3c00");
		let signature = Signature::from_raw(signature);
		assert!(pair.sign(&message[..]) == signature);
		assert!(Pair::verify(&signature, &message[..], &public));
	}

	#[test]
	fn test_vector_by_string_should_work() {
		let pair = Pair::from_string(
			"0x9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
			None,
		)
		.unwrap();
		let public = pair.public();
		assert_eq!(
			public,
			Public::from_full(
				&hex!("8db55b05db86c0b1786ca49f095d76344c9e6056b2f02701a7e7f3c20aabfd913ebbe148dd17c56551a52952371071a6c604b3f3abe8f2c8fa742158ea6dd7d4")[..],
			).unwrap(),
		);
		let message = b"";
		let signature = hex!("3dde91174bd9359027be59a428b8146513df80a2a3c7eda2194f64de04a69ab97b753169e94db6ffd50921a2668a48b94ca11e3d32c1ff19cfe88890aa7e8f3c00");
		let signature = Signature::from_raw(signature);
		assert!(pair.sign(&message[..]) == signature);
		assert!(Pair::verify(&signature, &message[..], &public));
	}

	#[test]
	fn generated_pair_should_work() {
		let (pair, _) = Pair::generate();
		let public = pair.public();
		let message = b"Something important";
		let signature = pair.sign(&message[..]);
		assert!(Pair::verify(&signature, &message[..], &public));
		assert!(!Pair::verify(&signature, b"Something else", &public));
	}

	#[test]
	fn seeded_pair_should_work() {
		let pair = Pair::from_seed(b"12345678901234567890123456789012");
		let public = pair.public();
		assert_eq!(
			public,
			Public::from_full(
				&hex!("5676109c54b9a16d271abeb4954316a40a32bcce023ac14c8e26e958aa68fba995840f3de562156558efbfdac3f16af0065e5f66795f4dd8262a228ef8c6d813")[..],
			).unwrap(),
		);
		let message = hex!("2f8c6129d816cf51c374bc7f08c3e63ed156cf78aefb4a6550d97b87997977ee00000000000000000200d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a4500000000000000");
		let signature = pair.sign(&message[..]);
		println!("Correct signature: {:?}", signature);
		assert!(Pair::verify(&signature, &message[..], &public));
		assert!(!Pair::verify(&signature, "Other message", &public));
	}

	#[test]
	fn generate_with_phrase_recovery_possible() {
		let (pair1, phrase, _) = Pair::generate_with_phrase(None);
		let (pair2, _) = Pair::from_phrase(&phrase, None).unwrap();

		assert_eq!(pair1.public(), pair2.public());
	}

	#[test]
	fn generate_with_password_phrase_recovery_possible() {
		let (pair1, phrase, _) = Pair::generate_with_phrase(Some("password"));
		let (pair2, _) = Pair::from_phrase(&phrase, Some("password")).unwrap();

		assert_eq!(pair1.public(), pair2.public());
	}

	#[test]
	fn password_does_something() {
		let (pair1, phrase, _) = Pair::generate_with_phrase(Some("password"));
		let (pair2, _) = Pair::from_phrase(&phrase, None).unwrap();

		assert_ne!(pair1.public(), pair2.public());
	}

	#[test]
	fn ss58check_roundtrip_works() {
		let pair = Pair::from_seed(b"12345678901234567890123456789012");
		let public = pair.public();
		let s = public.to_ss58check();
		println!("Correct: {}", s);
		let cmp = Public::from_ss58check(&s).unwrap();
		assert_eq!(cmp, public);
	}

	#[test]
	fn ss58check_format_check_works() {
		let pair = Pair::from_seed(b"12345678901234567890123456789012");
		let public = pair.public();
		let format = Ss58AddressFormatRegistry::Reserved46Account.into();
		let s = public.to_ss58check_with_version(format);
		assert_eq!(Public::from_ss58check_with_version(&s), Err(PublicError::FormatNotAllowed));
	}

	#[test]
	fn ss58check_full_roundtrip_works() {
		let pair = Pair::from_seed(b"12345678901234567890123456789012");
		let public = pair.public();
		let format = Ss58AddressFormatRegistry::PolkadotAccount.into();
		let s = public.to_ss58check_with_version(format);
		let (k, f) = Public::from_ss58check_with_version(&s).unwrap();
		assert_eq!(k, public);
		assert_eq!(f, format);

		let format = Ss58AddressFormat::custom(64);
		let s = public.to_ss58check_with_version(format);
		let (k, f) = Public::from_ss58check_with_version(&s).unwrap();
		assert_eq!(k, public);
		assert_eq!(f, format);
	}

	#[test]
	fn ss58check_custom_format_works() {
		// We need to run this test in its own process to not interfere with other tests running in
		// parallel and also relying on the ss58 version.
		if std::env::var("RUN_CUSTOM_FORMAT_TEST") == Ok("1".into()) {
			use crate::crypto::Ss58AddressFormat;
			// temp save default format version
			let default_format = crate::crypto::default_ss58_version();
			// set current ss58 version is custom "200" `Ss58AddressFormat::Custom(200)`

			set_default_ss58_version(Ss58AddressFormat::custom(200));
			// custom addr encoded by version 200
			let addr = "4pbsSkWcBaYoFHrKJZp5fDVUKbqSYD9dhZZGvpp3vQ5ysVs5ybV";
			Public::from_ss58check(addr).unwrap();

			set_default_ss58_version(default_format);
			// set current ss58 version to default version
			let addr = "KWAfgC2aRG5UVD6CpbPQXCx4YZZUhvWqqAJE6qcYc9Rtr6g5C";
			Public::from_ss58check(addr).unwrap();

			println!("CUSTOM_FORMAT_SUCCESSFUL");
		} else {
			let executable = std::env::current_exe().unwrap();
			let output = std::process::Command::new(executable)
				.env("RUN_CUSTOM_FORMAT_TEST", "1")
				.args(&["--nocapture", "ss58check_custom_format_works"])
				.output()
				.unwrap();

			let output = String::from_utf8(output.stdout).unwrap();
			assert!(output.contains("CUSTOM_FORMAT_SUCCESSFUL"));
		}
	}

	#[test]
	fn signature_serialization_works() {
		let pair = Pair::from_seed(b"12345678901234567890123456789012");
		let message = b"Something important";
		let signature = pair.sign(&message[..]);
		let serialized_signature = serde_json::to_string(&signature).unwrap();
		// Signature is 65 bytes, so 130 chars + 2 quote chars
		assert_eq!(serialized_signature.len(), 132);
		let signature = serde_json::from_str(&serialized_signature).unwrap();
		assert!(Pair::verify(&signature, &message[..], &pair.public()));
	}

	#[test]
	fn signature_serialization_doesnt_panic() {
		fn deserialize_signature(text: &str) -> Result<Signature, serde_json::error::Error> {
			serde_json::from_str(text)
		}
		assert!(deserialize_signature("Not valid json.").is_err());
		assert!(deserialize_signature("\"Not an actual signature.\"").is_err());
		// Poorly-sized
		assert!(deserialize_signature("\"abc123\"").is_err());
	}

	#[test]
	fn sign_prehashed_works() {
		let (pair, _, _) = Pair::generate_with_phrase(Some("password"));

		// `msg` shouldn't be mangled
		let msg = [0u8; 32];
		let sig1 = pair.sign_prehashed(&msg);
		let sig2: Signature = {
			let message = Message::from_slice(&msg).unwrap();
			SECP256K1.sign_ecdsa_recoverable(&message, &pair.secret).into()
		};
		assert_eq!(sig1, sig2);

		// signature is actually different
		let sig2 = pair.sign(&msg);
		assert_ne!(sig1, sig2);

		// using pre-hashed `msg` works
		let msg = b"this should be hashed";
		let sig1 = pair.sign_prehashed(&blake2_256(msg));
		let sig2 = pair.sign(msg);
		assert_eq!(sig1, sig2);
	}

	#[test]
	fn verify_prehashed_works() {
		let (pair, _, _) = Pair::generate_with_phrase(Some("password"));

		// `msg` and `sig` match
		let msg = blake2_256(b"this should be hashed");
		let sig = pair.sign_prehashed(&msg);
		assert!(Pair::verify_prehashed(&sig, &msg, &pair.public()));

		// `msg` and `sig` don't match
		let msg = blake2_256(b"this is a different message");
		assert!(!Pair::verify_prehashed(&sig, &msg, &pair.public()));
	}

	#[test]
	fn recover_prehashed_works() {
		let (pair, _, _) = Pair::generate_with_phrase(Some("password"));

		// recovered key matches signing key
		let msg = blake2_256(b"this should be hashed");
		let sig = pair.sign_prehashed(&msg);
		let key = sig.recover_prehashed(&msg).unwrap();
		assert_eq!(pair.public(), key);

		// recovered key is useable
		assert!(Pair::verify_prehashed(&sig, &msg, &key));

		// recovered key and signing key don't match
		let msg = blake2_256(b"this is a different message");
		let key = sig.recover_prehashed(&msg).unwrap();
		assert_ne!(pair.public(), key);
	}
}