1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// This file is part of Substrate.

// Copyright (C) 2020-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Merkle Mountain Range primitive types.

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]

use sp_debug_derive::RuntimeDebug;
use sp_runtime::traits;
#[cfg(not(feature = "std"))]
use sp_std::prelude::Vec;
use sp_std::{fmt, vec};

/// A type to describe node position in the MMR (node index).
pub type NodeIndex = u64;

/// A type to describe leaf position in the MMR.
///
/// Note this is different from [`NodeIndex`], which can be applied to
/// both leafs and inner nodes. Leafs will always have consecutive `LeafIndex`,
/// but might be actually at different positions in the MMR `NodeIndex`.
pub type LeafIndex = u64;

/// A provider of the MMR's leaf data.
pub trait LeafDataProvider {
	/// A type that should end up in the leaf of MMR.
	type LeafData: FullLeaf + codec::Decode;

	/// The method to return leaf data that should be placed
	/// in the leaf node appended MMR at this block.
	///
	/// This is being called by the `on_initialize` method of
	/// this pallet at the very beginning of each block.
	fn leaf_data() -> Self::LeafData;
}

impl LeafDataProvider for () {
	type LeafData = ();

	fn leaf_data() -> Self::LeafData {
		()
	}
}

/// New MMR root notification hook.
pub trait OnNewRoot<Hash> {
	/// Function called by the pallet in case new MMR root has been computed.
	fn on_new_root(root: &Hash);
}

/// No-op implementation of [OnNewRoot].
impl<Hash> OnNewRoot<Hash> for () {
	fn on_new_root(_root: &Hash) {}
}

/// A MMR proof data for one of the leaves.
#[derive(codec::Encode, codec::Decode, RuntimeDebug, Clone, PartialEq, Eq)]
pub struct Proof<Hash> {
	/// The index of the leaf the proof is for.
	pub leaf_index: LeafIndex,
	/// Number of leaves in MMR, when the proof was generated.
	pub leaf_count: NodeIndex,
	/// Proof elements (hashes of siblings of inner nodes on the path to the leaf).
	pub items: Vec<Hash>,
}

/// A full leaf content stored in the offchain-db.
pub trait FullLeaf: Clone + PartialEq + fmt::Debug {
	/// Encode the leaf either in its full or compact form.
	///
	/// NOTE the encoding returned here MUST be `Decode`able into `FullLeaf`.
	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F, compact: bool) -> R;
}

impl<T: codec::Encode + codec::Decode + Clone + PartialEq + fmt::Debug> FullLeaf for T {
	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F, _compact: bool) -> R {
		codec::Encode::using_encoded(self, f)
	}
}

/// A helper type to allow using arbitrary SCALE-encoded leaf data in the RuntimeApi.
///
/// The point is to be able to verify MMR proofs from external MMRs, where we don't
/// know the exact leaf type, but it's enough for us to have it SCALE-encoded.
///
/// Note the leaf type should be encoded in its compact form when passed through this type.
/// See [FullLeaf] documentation for details.
///
/// This type does not implement SCALE encoding/decoding on purpose to avoid confusion,
/// it would have to be SCALE-compatible with the concrete leaf type, but due to SCALE limitations
/// it's not possible to know how many bytes the encoding of concrete leaf type uses.
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
#[derive(RuntimeDebug, Clone, PartialEq)]
pub struct OpaqueLeaf(
	/// Raw bytes of the leaf type encoded in its compact form.
	///
	/// NOTE it DOES NOT include length prefix (like `Vec<u8>` encoding would).
	#[cfg_attr(feature = "std", serde(with = "sp_core::bytes"))]
	pub Vec<u8>,
);

impl OpaqueLeaf {
	/// Convert a concrete MMR leaf into an opaque type.
	pub fn from_leaf<T: FullLeaf>(leaf: &T) -> Self {
		let encoded_leaf = leaf.using_encoded(|d| d.to_vec(), true);
		OpaqueLeaf::from_encoded_leaf(encoded_leaf)
	}

	/// Create a `OpaqueLeaf` given raw bytes of compact-encoded leaf.
	pub fn from_encoded_leaf(encoded_leaf: Vec<u8>) -> Self {
		OpaqueLeaf(encoded_leaf)
	}

	/// Attempt to decode the leaf into expected concrete type.
	pub fn try_decode<T: codec::Decode>(&self) -> Option<T> {
		codec::Decode::decode(&mut &*self.0).ok()
	}
}

impl FullLeaf for OpaqueLeaf {
	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F, _compact: bool) -> R {
		f(&self.0)
	}
}

/// A type-safe wrapper for the concrete leaf type.
///
/// This structure serves merely to avoid passing raw `Vec<u8>` around.
/// It must be `Vec<u8>`-encoding compatible.
///
/// It is different from [`OpaqueLeaf`], because it does implement `Codec`
/// and the encoding has to match raw `Vec<u8>` encoding.
#[derive(codec::Encode, codec::Decode, RuntimeDebug, PartialEq, Eq)]
pub struct EncodableOpaqueLeaf(pub Vec<u8>);

impl EncodableOpaqueLeaf {
	/// Convert a concrete leaf into encodable opaque version.
	pub fn from_leaf<T: FullLeaf>(leaf: &T) -> Self {
		let opaque = OpaqueLeaf::from_leaf(leaf);
		Self::from_opaque_leaf(opaque)
	}

	/// Given an opaque leaf, make it encodable.
	pub fn from_opaque_leaf(opaque: OpaqueLeaf) -> Self {
		Self(opaque.0)
	}

	/// Try to convert into a [OpaqueLeaf].
	pub fn into_opaque_leaf(self) -> OpaqueLeaf {
		// wrap into `OpaqueLeaf` type
		OpaqueLeaf::from_encoded_leaf(self.0)
	}
}

/// An element representing either full data or its hash.
///
/// See [Compact] to see how it may be used in practice to reduce the size
/// of proofs in case multiple [LeafDataProvider]s are composed together.
/// This is also used internally by the MMR to differentiate leaf nodes (data)
/// and inner nodes (hashes).
///
/// [DataOrHash::hash] method calculates the hash of this element in its compact form,
/// so should be used instead of hashing the encoded form (which will always be non-compact).
#[derive(RuntimeDebug, Clone, PartialEq)]
pub enum DataOrHash<H: traits::Hash, L> {
	/// Arbitrary data in its full form.
	Data(L),
	/// A hash of some data.
	Hash(H::Output),
}

impl<H: traits::Hash, L> From<L> for DataOrHash<H, L> {
	fn from(l: L) -> Self {
		Self::Data(l)
	}
}

mod encoding {
	use super::*;

	/// A helper type to implement [codec::Codec] for [DataOrHash].
	#[derive(codec::Encode, codec::Decode)]
	enum Either<A, B> {
		Left(A),
		Right(B),
	}

	impl<H: traits::Hash, L: FullLeaf> codec::Encode for DataOrHash<H, L> {
		fn encode_to<T: codec::Output + ?Sized>(&self, dest: &mut T) {
			match self {
				Self::Data(l) => l.using_encoded(
					|data| Either::<&[u8], &H::Output>::Left(data).encode_to(dest),
					false,
				),
				Self::Hash(h) => Either::<&[u8], &H::Output>::Right(h).encode_to(dest),
			}
		}
	}

	impl<H: traits::Hash, L: FullLeaf + codec::Decode> codec::Decode for DataOrHash<H, L> {
		fn decode<I: codec::Input>(value: &mut I) -> Result<Self, codec::Error> {
			let decoded: Either<Vec<u8>, H::Output> = Either::decode(value)?;
			Ok(match decoded {
				Either::Left(l) => DataOrHash::Data(L::decode(&mut &*l)?),
				Either::Right(r) => DataOrHash::Hash(r),
			})
		}
	}
}

impl<H: traits::Hash, L: FullLeaf> DataOrHash<H, L> {
	/// Retrieve a hash of this item.
	///
	/// Depending on the node type it's going to either be a contained value for [DataOrHash::Hash]
	/// node, or a hash of SCALE-encoded [DataOrHash::Data] data.
	pub fn hash(&self) -> H::Output {
		match *self {
			Self::Data(ref leaf) => leaf.using_encoded(<H as traits::Hash>::hash, true),
			Self::Hash(ref hash) => *hash,
		}
	}
}

/// A composition of multiple leaf elements with compact form representation.
///
/// When composing together multiple [LeafDataProvider]s you will end up with
/// a tuple of `LeafData` that each element provides.
///
/// However this will cause the leaves to have significant size, while for some
/// use cases it will be enough to prove only one element of the tuple.
/// That's the rationale for [Compact] struct. We wrap each element of the tuple
/// into [DataOrHash] and each tuple element is hashed first before constructing
/// the final hash of the entire tuple. This allows you to replace tuple elements
/// you don't care about with their hashes.
#[derive(RuntimeDebug, Clone, PartialEq)]
pub struct Compact<H, T> {
	/// Internal tuple representation.
	pub tuple: T,
	_hash: sp_std::marker::PhantomData<H>,
}

impl<H, T> sp_std::ops::Deref for Compact<H, T> {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		&self.tuple
	}
}

impl<H, T> Compact<H, T> {
	/// Create a new [Compact] wrapper for a tuple.
	pub fn new(tuple: T) -> Self {
		Self { tuple, _hash: Default::default() }
	}
}

impl<H, T: codec::Decode> codec::Decode for Compact<H, T> {
	fn decode<I: codec::Input>(value: &mut I) -> Result<Self, codec::Error> {
		T::decode(value).map(Compact::new)
	}
}

macro_rules! impl_leaf_data_for_tuple {
	( $( $name:ident : $id:tt ),+ ) => {
		/// [FullLeaf] implementation for `Compact<H, (DataOrHash<H, Tuple>, ...)>`
		impl<H, $( $name ),+> FullLeaf for Compact<H, ( $( DataOrHash<H, $name>, )+ )> where
			H: traits::Hash,
			$( $name: FullLeaf ),+
		{
			fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F, compact: bool) -> R {
				if compact {
					codec::Encode::using_encoded(&(
						$( DataOrHash::<H, $name>::Hash(self.tuple.$id.hash()), )+
					), f)
				} else {
					codec::Encode::using_encoded(&self.tuple, f)
				}
			}
		}

		/// [LeafDataProvider] implementation for `Compact<H, (DataOrHash<H, Tuple>, ...)>`
		///
		/// This provides a compact-form encoding for tuples wrapped in [Compact].
		impl<H, $( $name ),+> LeafDataProvider for Compact<H, ( $( $name, )+ )> where
			H: traits::Hash,
			$( $name: LeafDataProvider ),+
		{
			type LeafData = Compact<
				H,
				( $( DataOrHash<H, $name::LeafData>, )+ ),
			>;

			fn leaf_data() -> Self::LeafData {
				let tuple = (
					$( DataOrHash::Data($name::leaf_data()), )+
				);
				Compact::new(tuple)
			}
		}

		/// [LeafDataProvider] implementation for `(Tuple, ...)`
		///
		/// This provides regular (non-compactable) composition of [LeafDataProvider]s.
		impl<$( $name ),+> LeafDataProvider for ( $( $name, )+ ) where
			( $( $name::LeafData, )+ ): FullLeaf,
			$( $name: LeafDataProvider ),+
		{
			type LeafData = ( $( $name::LeafData, )+ );

			fn leaf_data() -> Self::LeafData {
				(
					$( $name::leaf_data(), )+
				)
			}
		}
	}
}

/// Test functions implementation for `Compact<H, (DataOrHash<H, Tuple>, ...)>`
#[cfg(test)]
impl<H, A, B> Compact<H, (DataOrHash<H, A>, DataOrHash<H, B>)>
where
	H: traits::Hash,
	A: FullLeaf,
	B: FullLeaf,
{
	/// Retrieve a hash of this item in its compact form.
	pub fn hash(&self) -> H::Output {
		self.using_encoded(<H as traits::Hash>::hash, true)
	}
}

impl_leaf_data_for_tuple!(A:0);
impl_leaf_data_for_tuple!(A:0, B:1);
impl_leaf_data_for_tuple!(A:0, B:1, C:2);
impl_leaf_data_for_tuple!(A:0, B:1, C:2, D:3);
impl_leaf_data_for_tuple!(A:0, B:1, C:2, D:3, E:4);

/// A MMR proof data for a group of leaves.
#[derive(codec::Encode, codec::Decode, RuntimeDebug, Clone, PartialEq, Eq)]
pub struct BatchProof<Hash> {
	/// The indices of the leaves the proof is for.
	pub leaf_indices: Vec<LeafIndex>,
	/// Number of leaves in MMR, when the proof was generated.
	pub leaf_count: NodeIndex,
	/// Proof elements (hashes of siblings of inner nodes on the path to the leaf).
	pub items: Vec<Hash>,
}

impl<Hash> BatchProof<Hash> {
	/// Converts batch proof to single leaf proof
	pub fn into_single_leaf_proof(proof: BatchProof<Hash>) -> Result<Proof<Hash>, Error> {
		Ok(Proof {
			leaf_index: *proof.leaf_indices.get(0).ok_or(Error::InvalidLeafIndex)?,
			leaf_count: proof.leaf_count,
			items: proof.items,
		})
	}
}

impl<Hash> Proof<Hash> {
	/// Converts a single leaf proof into a batch proof
	pub fn into_batch_proof(proof: Proof<Hash>) -> BatchProof<Hash> {
		BatchProof {
			leaf_indices: vec![proof.leaf_index],
			leaf_count: proof.leaf_count,
			items: proof.items,
		}
	}
}
/// Merkle Mountain Range operation error.
#[derive(RuntimeDebug, codec::Encode, codec::Decode, PartialEq, Eq)]
pub enum Error {
	/// Error while pushing new node.
	Push,
	/// Error getting the new root.
	GetRoot,
	/// Error commiting changes.
	Commit,
	/// Error during proof generation.
	GenerateProof,
	/// Proof verification error.
	Verify,
	/// Leaf not found in the storage.
	LeafNotFound,
	/// Mmr Pallet not included in runtime
	PalletNotIncluded,
	/// Cannot find the requested leaf index
	InvalidLeafIndex,
}

impl Error {
	#![allow(unused_variables)]
	/// Consume given error `e` with `self` and generate a native log entry with error details.
	pub fn log_error(self, e: impl fmt::Debug) -> Self {
		log::error!(
			target: "runtime::mmr",
			"[{:?}] MMR error: {:?}",
			self,
			e,
		);
		self
	}

	/// Consume given error `e` with `self` and generate a native log entry with error details.
	pub fn log_debug(self, e: impl fmt::Debug) -> Self {
		log::debug!(
			target: "runtime::mmr",
			"[{:?}] MMR error: {:?}",
			self,
			e,
		);
		self
	}
}

sp_api::decl_runtime_apis! {
	/// API to interact with MMR pallet.
	pub trait MmrApi<Hash: codec::Codec> {
		/// Generate MMR proof for a leaf under given index.
		fn generate_proof(leaf_index: LeafIndex) -> Result<(EncodableOpaqueLeaf, Proof<Hash>), Error>;

		/// Verify MMR proof against on-chain MMR.
		///
		/// Note this function will use on-chain MMR root hash and check if the proof
		/// matches the hash.
		/// See [Self::verify_proof_stateless] for a stateless verifier.
		fn verify_proof(leaf: EncodableOpaqueLeaf, proof: Proof<Hash>) -> Result<(), Error>;

		/// Verify MMR proof against given root hash.
		///
		/// Note this function does not require any on-chain storage - the
		/// proof is verified against given MMR root hash.
		///
		/// The leaf data is expected to be encoded in its compact form.
		fn verify_proof_stateless(root: Hash, leaf: EncodableOpaqueLeaf, proof: Proof<Hash>)
			-> Result<(), Error>;

		/// Return the on-chain MMR root hash.
		fn mmr_root() -> Result<Hash, Error>;

		/// Generate MMR proof for a series of leaves under given indices.
		fn generate_batch_proof(leaf_indices: Vec<LeafIndex>) -> Result<(Vec<EncodableOpaqueLeaf>, BatchProof<Hash>), Error>;

		/// Verify MMR proof against on-chain MMR for a batch of leaves.
		///
		/// Note this function will use on-chain MMR root hash and check if the proof
		/// matches the hash.
		/// Note, the leaves should be sorted such that corresponding leaves and leaf indices have the
		/// same position in both the `leaves` vector and the `leaf_indices` vector contained in the [BatchProof]
		fn verify_batch_proof(leaves: Vec<EncodableOpaqueLeaf>, proof: BatchProof<Hash>) -> Result<(), Error>;

		/// Verify MMR proof against given root hash or a batch of leaves.
		///
		/// Note this function does not require any on-chain storage - the
		/// proof is verified against given MMR root hash.
		///
		/// Note, the leaves should be sorted such that corresponding leaves and leaf indices have the
		/// same position in both the `leaves` vector and the `leaf_indices` vector contained in the [BatchProof]
		fn verify_batch_proof_stateless(root: Hash, leaves: Vec<EncodableOpaqueLeaf>, proof: BatchProof<Hash>)
			-> Result<(), Error>;
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	use codec::Decode;
	use sp_core::H256;
	use sp_runtime::traits::Keccak256;

	pub(crate) fn hex(s: &str) -> H256 {
		s.parse().unwrap()
	}

	type Test = DataOrHash<Keccak256, String>;
	type TestCompact = Compact<Keccak256, (Test, Test)>;
	type TestProof = Proof<<Keccak256 as traits::Hash>::Output>;

	#[test]
	fn should_encode_decode_proof() {
		// given
		let proof: TestProof = Proof {
			leaf_index: 5,
			leaf_count: 10,
			items: vec![
				hex("c3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd"),
				hex("d3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd"),
				hex("e3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd"),
			],
		};

		// when
		let encoded = codec::Encode::encode(&proof);
		let decoded = TestProof::decode(&mut &*encoded);

		// then
		assert_eq!(decoded, Ok(proof));
	}

	#[test]
	fn should_encode_decode_correctly_if_no_compact() {
		// given
		let cases = vec![
			Test::Data("Hello World!".into()),
			Test::Hash(hex("c3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd")),
			Test::Data("".into()),
			Test::Data("3e48d6bcd417fb22e044747242451e2c0f3e602d1bcad2767c34808621956417".into()),
		];

		// when
		let encoded = cases.iter().map(codec::Encode::encode).collect::<Vec<_>>();

		let decoded = encoded.iter().map(|x| Test::decode(&mut &**x)).collect::<Vec<_>>();

		// then
		assert_eq!(
			decoded,
			cases.into_iter().map(Result::<_, codec::Error>::Ok).collect::<Vec<_>>()
		);
		// check encoding correctness
		assert_eq!(&encoded[0], &hex_literal::hex!("00343048656c6c6f20576f726c6421"));
		assert_eq!(
			encoded[1].as_slice(),
			hex_literal::hex!("01c3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd")
				.as_ref()
		);
	}

	#[test]
	fn should_return_the_hash_correctly() {
		// given
		let a = Test::Data("Hello World!".into());
		let b = Test::Hash(hex("c3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd"));

		// when
		let a = a.hash();
		let b = b.hash();

		// then
		assert_eq!(a, hex("a9c321be8c24ba4dc2bd73f5300bde67dc57228ab8b68b607bb4c39c5374fac9"));
		assert_eq!(b, hex("c3e7ba6b511162fead58f2c8b5764ce869ed1118011ac37392522ed16720bbcd"));
	}

	#[test]
	fn compact_should_work() {
		// given
		let a = Test::Data("Hello World!".into());
		let b = Test::Data("".into());

		// when
		let c: TestCompact = Compact::new((a.clone(), b.clone()));
		let d: TestCompact = Compact::new((Test::Hash(a.hash()), Test::Hash(b.hash())));

		// then
		assert_eq!(c.hash(), d.hash());
	}

	#[test]
	fn compact_should_encode_decode_correctly() {
		// given
		let a = Test::Data("Hello World!".into());
		let b = Test::Data("".into());

		let c: TestCompact = Compact::new((a.clone(), b.clone()));
		let d: TestCompact = Compact::new((Test::Hash(a.hash()), Test::Hash(b.hash())));
		let cases = vec![c, d.clone()];

		// when
		let encoded_compact =
			cases.iter().map(|c| c.using_encoded(|x| x.to_vec(), true)).collect::<Vec<_>>();

		let encoded =
			cases.iter().map(|c| c.using_encoded(|x| x.to_vec(), false)).collect::<Vec<_>>();

		let decoded_compact = encoded_compact
			.iter()
			.map(|x| TestCompact::decode(&mut &**x))
			.collect::<Vec<_>>();

		let decoded = encoded.iter().map(|x| TestCompact::decode(&mut &**x)).collect::<Vec<_>>();

		// then
		assert_eq!(
			decoded,
			cases.into_iter().map(Result::<_, codec::Error>::Ok).collect::<Vec<_>>()
		);

		assert_eq!(decoded_compact, vec![Ok(d.clone()), Ok(d.clone())]);
	}

	#[test]
	fn opaque_leaves_should_be_full_leaf_compatible() {
		// given
		let a = Test::Data("Hello World!".into());
		let b = Test::Data("".into());

		let c: TestCompact = Compact::new((a.clone(), b.clone()));
		let d: TestCompact = Compact::new((Test::Hash(a.hash()), Test::Hash(b.hash())));
		let cases = vec![c, d.clone()];

		let encoded_compact = cases
			.iter()
			.map(|c| c.using_encoded(|x| x.to_vec(), true))
			.map(OpaqueLeaf::from_encoded_leaf)
			.collect::<Vec<_>>();

		let opaque = cases.iter().map(OpaqueLeaf::from_leaf).collect::<Vec<_>>();

		// then
		assert_eq!(encoded_compact, opaque);
	}

	#[test]
	fn encode_opaque_leaf_should_be_scale_compatible() {
		use codec::Encode;

		// given
		let a = Test::Data("Hello World!".into());
		let case1 = EncodableOpaqueLeaf::from_leaf(&a);
		let case2 = EncodableOpaqueLeaf::from_opaque_leaf(OpaqueLeaf(a.encode()));
		let case3 = a.encode().encode();

		// when
		let encoded = vec![&case1, &case2].into_iter().map(|x| x.encode()).collect::<Vec<_>>();
		let decoded = vec![&*encoded[0], &*encoded[1], &*case3]
			.into_iter()
			.map(|x| EncodableOpaqueLeaf::decode(&mut &*x))
			.collect::<Vec<_>>();

		// then
		assert_eq!(case1, case2);
		assert_eq!(encoded[0], encoded[1]);
		// then encoding should also match double-encoded leaf.
		assert_eq!(encoded[0], case3);

		assert_eq!(decoded[0], decoded[1]);
		assert_eq!(decoded[1], decoded[2]);
		assert_eq!(decoded[0], Ok(case2));
		assert_eq!(decoded[1], Ok(case1));
	}
}