1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// This file is part of Substrate.

// Copyright (C) 2020-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Runtime tasks.
//!
//! Contains runtime-usable functions for spawning parallel purely computational tasks.
//!
//! NOTE: This is experimental API.
//! NOTE: When using in actual runtime, make sure you don't produce unbounded parallelism.
//! So this is bad example to use it:
//! ```rust
//!    fn my_parallel_computator(data: Vec<u8>) -> Vec<u8> {
//!        unimplemented!()
//!    }
//!    fn test(dynamic_variable: i32) {
//!        for _ in 0..dynamic_variable { sp_tasks::spawn(my_parallel_computator, vec![]); }
//!    }
//! ```
//!
//! While this is a good example:
//! ```rust
//!    use codec::Encode;
//!    static STATIC_VARIABLE: i32 = 4;
//!
//!    fn my_parallel_computator(data: Vec<u8>) -> Vec<u8> {
//!        unimplemented!()
//!    }
//!
//!    fn test(computation_payload: Vec<u8>) {
//!        let parallel_tasks = (0..STATIC_VARIABLE).map(|idx|
//!            sp_tasks::spawn(my_parallel_computator, computation_payload.chunks(10).nth(idx as _).encode())
//!        );
//!    }
//! ```
//!
//! When allowing unbounded parallelism, malicious transactions can exploit it and partition
//! network consensus based on how much resources nodes have.

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "std")]
mod async_externalities;

#[cfg(feature = "std")]
pub use async_externalities::{new_async_externalities, AsyncExternalities};

#[cfg(feature = "std")]
mod inner {
	use sp_core::traits::TaskExecutorExt;
	use sp_externalities::ExternalitiesExt as _;
	use std::{panic::AssertUnwindSafe, sync::mpsc};

	/// Task handle (wasm).
	///
	/// This can be `join`-ed to get (blocking) the result of
	/// the spawned task execution.
	#[must_use]
	pub struct DataJoinHandle {
		receiver: mpsc::Receiver<Vec<u8>>,
	}

	impl DataJoinHandle {
		/// Join handle returned by `spawn` function
		pub fn join(self) -> Vec<u8> {
			self.receiver
				.recv()
				.expect("Spawned runtime task terminated before sending result.")
		}
	}

	/// Spawn new runtime task (native).
	pub fn spawn(entry_point: fn(Vec<u8>) -> Vec<u8>, data: Vec<u8>) -> DataJoinHandle {
		let scheduler = sp_externalities::with_externalities(|mut ext| {
			ext.extension::<TaskExecutorExt>()
				.expect("No task executor associated with the current context!")
				.clone()
		})
		.expect("Spawn called outside of externalities context!");

		let (sender, receiver) = mpsc::channel();
		let extra_scheduler = scheduler.clone();
		scheduler.spawn(
			"parallel-runtime-spawn",
			Some("substrate-runtime"),
			Box::pin(async move {
				let result = match crate::new_async_externalities(extra_scheduler) {
					Ok(mut ext) => {
						let mut ext = AssertUnwindSafe(&mut ext);
						match std::panic::catch_unwind(move || {
							sp_externalities::set_and_run_with_externalities(
								&mut **ext,
								move || entry_point(data),
							)
						}) {
							Ok(result) => result,
							Err(panic) => {
								log::error!(
									target: "runtime",
									"Spawned task panicked: {:?}",
									panic,
								);

								// This will drop sender without sending anything.
								return
							},
						}
					},
					Err(e) => {
						log::error!(
							target: "runtime",
							"Unable to run async task: {}",
							e,
						);

						return
					},
				};

				let _ = sender.send(result);
			}),
		);

		DataJoinHandle { receiver }
	}
}

#[cfg(not(feature = "std"))]
mod inner {
	use core::mem;
	use sp_std::prelude::*;

	/// Dispatch wrapper for wasm blob.
	///
	/// Serves as trampoline to call any rust function with (Vec<u8>) -> Vec<u8> compiled
	/// into the runtime.
	///
	/// Function item should be provided with `func_ref`. Argument for the call
	/// will be generated from bytes at `payload_ptr` with `payload_len`.
	///
	/// NOTE: Since this dynamic dispatch function and the invoked function are compiled with
	/// the same compiler, there should be no problem with ABI incompatibility.
	extern "C" fn dispatch_wrapper(
		func_ref: *const u8,
		payload_ptr: *mut u8,
		payload_len: u32,
	) -> u64 {
		let payload_len = payload_len as usize;
		let output = unsafe {
			let payload = Vec::from_raw_parts(payload_ptr, payload_len, payload_len);
			let ptr: fn(Vec<u8>) -> Vec<u8> = mem::transmute(func_ref);
			(ptr)(payload)
		};
		sp_runtime_interface::pack_ptr_and_len(output.as_ptr() as usize as _, output.len() as _)
	}

	/// Spawn new runtime task (wasm).
	pub fn spawn(entry_point: fn(Vec<u8>) -> Vec<u8>, payload: Vec<u8>) -> DataJoinHandle {
		let func_ptr: usize = unsafe { mem::transmute(entry_point) };

		let handle =
			sp_io::runtime_tasks::spawn(dispatch_wrapper as usize as _, func_ptr as u32, payload);
		DataJoinHandle { handle }
	}

	/// Task handle (wasm).
	///
	/// This can be `join`-ed to get (blocking) the result of
	/// the spawned task execution.
	#[must_use]
	pub struct DataJoinHandle {
		handle: u64,
	}

	impl DataJoinHandle {
		/// Join handle returned by `spawn` function
		pub fn join(self) -> Vec<u8> {
			sp_io::runtime_tasks::join(self.handle)
		}
	}
}

pub use inner::{spawn, DataJoinHandle};

#[cfg(test)]
mod tests {

	use super::*;

	fn async_runner(mut data: Vec<u8>) -> Vec<u8> {
		data.sort();
		data
	}

	fn async_panicker(_data: Vec<u8>) -> Vec<u8> {
		panic!("panic in async panicker!")
	}

	#[test]
	fn basic() {
		sp_io::TestExternalities::default().execute_with(|| {
			let a1 = spawn(async_runner, vec![5, 2, 1]).join();
			assert_eq!(a1, vec![1, 2, 5]);
		})
	}

	#[test]
	fn panicking() {
		let res = sp_io::TestExternalities::default().execute_with_safe(|| {
			spawn(async_panicker, vec![5, 2, 1]).join();
		});

		assert!(res.unwrap_err().contains("Closure panicked"));
	}

	#[test]
	fn many_joins() {
		sp_io::TestExternalities::default()
			.execute_with_safe(|| {
				// converges to 1 only after 1000+ steps
				let mut running_val = 9780657630u64;
				let mut data = vec![];
				let handles = (0..1024)
					.map(|_| {
						running_val = if running_val % 2 == 0 {
							running_val / 2
						} else {
							3 * running_val + 1
						};
						data.push(running_val as u8);
						(spawn(async_runner, data.clone()), data.clone())
					})
					.collect::<Vec<_>>();

				for (handle, mut data) in handles {
					let result = handle.join();
					data.sort();

					assert_eq!(result, data);
				}
			})
			.expect("Failed to run with externalities");
	}
}