1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#![cfg_attr(not(feature = "net"), allow(dead_code))]
use crate::io::interest::Interest;
use crate::runtime::io::{Direction, Handle, ReadyEvent, ScheduledIo};
use crate::util::slab;
use mio::event::Source;
use std::io;
use std::task::{Context, Poll};
cfg_io_driver! {
/// Associates an I/O resource with the reactor instance that drives it.
///
/// A registration represents an I/O resource registered with a Reactor such
/// that it will receive task notifications on readiness. This is the lowest
/// level API for integrating with a reactor.
///
/// The association between an I/O resource is made by calling
/// [`new_with_interest_and_handle`].
/// Once the association is established, it remains established until the
/// registration instance is dropped.
///
/// A registration instance represents two separate readiness streams. One
/// for the read readiness and one for write readiness. These streams are
/// independent and can be consumed from separate tasks.
///
/// **Note**: while `Registration` is `Sync`, the caller must ensure that
/// there are at most two tasks that use a registration instance
/// concurrently. One task for [`poll_read_ready`] and one task for
/// [`poll_write_ready`]. While violating this requirement is "safe" from a
/// Rust memory safety point of view, it will result in unexpected behavior
/// in the form of lost notifications and tasks hanging.
///
/// ## Platform-specific events
///
/// `Registration` also allows receiving platform-specific `mio::Ready`
/// events. These events are included as part of the read readiness event
/// stream. The write readiness event stream is only for `Ready::writable()`
/// events.
///
/// [`new_with_interest_and_handle`]: method@Self::new_with_interest_and_handle
/// [`poll_read_ready`]: method@Self::poll_read_ready`
/// [`poll_write_ready`]: method@Self::poll_write_ready`
#[derive(Debug)]
pub(crate) struct Registration {
/// Handle to the associated driver.
handle: Handle,
/// Reference to state stored by the driver.
shared: slab::Ref<ScheduledIo>,
}
}
unsafe impl Send for Registration {}
unsafe impl Sync for Registration {}
// ===== impl Registration =====
impl Registration {
/// Registers the I/O resource with the default reactor, for a specific
/// `Interest`. `new_with_interest` should be used over `new` when you need
/// control over the readiness state, such as when a file descriptor only
/// allows reads. This does not add `hup` or `error` so if you are
/// interested in those states, you will need to add them to the readiness
/// state passed to this function.
///
/// # Return
///
/// - `Ok` if the registration happened successfully
/// - `Err` if an error was encountered during registration
pub(crate) fn new_with_interest_and_handle(
io: &mut impl Source,
interest: Interest,
handle: Handle,
) -> io::Result<Registration> {
let shared = handle.inner.add_source(io, interest)?;
Ok(Registration { handle, shared })
}
/// Deregisters the I/O resource from the reactor it is associated with.
///
/// This function must be called before the I/O resource associated with the
/// registration is dropped.
///
/// Note that deregistering does not guarantee that the I/O resource can be
/// registered with a different reactor. Some I/O resource types can only be
/// associated with a single reactor instance for their lifetime.
///
/// # Return
///
/// If the deregistration was successful, `Ok` is returned. Any calls to
/// `Reactor::turn` that happen after a successful call to `deregister` will
/// no longer result in notifications getting sent for this registration.
///
/// `Err` is returned if an error is encountered.
pub(crate) fn deregister(&mut self, io: &mut impl Source) -> io::Result<()> {
self.handle.inner.deregister_source(io)
}
pub(crate) fn clear_readiness(&self, event: ReadyEvent) {
self.shared.clear_readiness(event);
}
// Uses the poll path, requiring the caller to ensure mutual exclusion for
// correctness. Only the last task to call this function is notified.
pub(crate) fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<ReadyEvent>> {
self.poll_ready(cx, Direction::Read)
}
// Uses the poll path, requiring the caller to ensure mutual exclusion for
// correctness. Only the last task to call this function is notified.
pub(crate) fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<ReadyEvent>> {
self.poll_ready(cx, Direction::Write)
}
// Uses the poll path, requiring the caller to ensure mutual exclusion for
// correctness. Only the last task to call this function is notified.
#[cfg(not(tokio_wasi))]
pub(crate) fn poll_read_io<R>(
&self,
cx: &mut Context<'_>,
f: impl FnMut() -> io::Result<R>,
) -> Poll<io::Result<R>> {
self.poll_io(cx, Direction::Read, f)
}
// Uses the poll path, requiring the caller to ensure mutual exclusion for
// correctness. Only the last task to call this function is notified.
pub(crate) fn poll_write_io<R>(
&self,
cx: &mut Context<'_>,
f: impl FnMut() -> io::Result<R>,
) -> Poll<io::Result<R>> {
self.poll_io(cx, Direction::Write, f)
}
/// Polls for events on the I/O resource's `direction` readiness stream.
///
/// If called with a task context, notify the task when a new event is
/// received.
fn poll_ready(
&self,
cx: &mut Context<'_>,
direction: Direction,
) -> Poll<io::Result<ReadyEvent>> {
// Keep track of task budget
let coop = ready!(crate::coop::poll_proceed(cx));
let ev = ready!(self.shared.poll_readiness(cx, direction));
if self.handle.inner.is_shutdown() {
return Poll::Ready(Err(gone()));
}
coop.made_progress();
Poll::Ready(Ok(ev))
}
fn poll_io<R>(
&self,
cx: &mut Context<'_>,
direction: Direction,
mut f: impl FnMut() -> io::Result<R>,
) -> Poll<io::Result<R>> {
loop {
let ev = ready!(self.poll_ready(cx, direction))?;
match f() {
Ok(ret) => {
return Poll::Ready(Ok(ret));
}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.clear_readiness(ev);
}
Err(e) => return Poll::Ready(Err(e)),
}
}
}
pub(crate) fn try_io<R>(
&self,
interest: Interest,
f: impl FnOnce() -> io::Result<R>,
) -> io::Result<R> {
let ev = self.shared.ready_event(interest);
// Don't attempt the operation if the resource is not ready.
if ev.ready.is_empty() {
return Err(io::ErrorKind::WouldBlock.into());
}
match f() {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.clear_readiness(ev);
Err(io::ErrorKind::WouldBlock.into())
}
res => res,
}
}
}
impl Drop for Registration {
fn drop(&mut self) {
// It is possible for a cycle to be created between wakers stored in
// `ScheduledIo` instances and `Arc<driver::Inner>`. To break this
// cycle, wakers are cleared. This is an imperfect solution as it is
// possible to store a `Registration` in a waker. In this case, the
// cycle would remain.
//
// See tokio-rs/tokio#3481 for more details.
self.shared.clear_wakers();
}
}
fn gone() -> io::Error {
io::Error::new(io::ErrorKind::Other, "IO driver has terminated")
}
cfg_io_readiness! {
impl Registration {
pub(crate) async fn readiness(&self, interest: Interest) -> io::Result<ReadyEvent> {
use std::future::Future;
use std::pin::Pin;
let fut = self.shared.readiness(interest);
pin!(fut);
crate::future::poll_fn(|cx| {
if self.handle.inner.is_shutdown() {
return Poll::Ready(Err(io::Error::new(
io::ErrorKind::Other,
crate::util::error::RUNTIME_SHUTTING_DOWN_ERROR
)));
}
Pin::new(&mut fut).poll(cx).map(Ok)
}).await
}
pub(crate) async fn async_io<R>(&self, interest: Interest, mut f: impl FnMut() -> io::Result<R>) -> io::Result<R> {
loop {
let event = self.readiness(interest).await?;
match f() {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.clear_readiness(event);
}
x => return x,
}
}
}
}
}