1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
//! ## Per-Layer Filtering
//!
//! Per-layer filters permit individual `Layer`s to have their own filter
//! configurations without interfering with other `Layer`s.
//!
//! This module is not public; the public APIs defined in this module are
//! re-exported in the top-level `filter` module. Therefore, this documentation
//! primarily concerns the internal implementation details. For the user-facing
//! public API documentation, see the individual public types in this module, as
//! well as the, see the `Layer` trait documentation's [per-layer filtering
//! section]][1].
//!
//! ## How does per-layer filtering work?
//!
//! As described in the API documentation, the [`Filter`] trait defines a
//! filtering strategy for a per-layer filter. We expect there will be a variety
//! of implementations of [`Filter`], both in `tracing-subscriber` and in user
//! code.
//!
//! To actually *use* a [`Filter`] implementation, it is combined with a
//! [`Layer`] by the [`Filtered`] struct defined in this module. [`Filtered`]
//! implements [`Layer`] by calling into the wrapped [`Layer`], or not, based on
//! the filtering strategy. While there will be a variety of types that implement
//! [`Filter`], all actual *uses* of per-layer filtering will occur through the
//! [`Filtered`] struct. Therefore, most of the implementation details live
//! there.
//!
//! [1]: crate::layer#per-layer-filtering
//! [`Filter`]: crate::layer::Filter
use crate::{
filter::LevelFilter,
layer::{self, Context, Layer},
registry,
};
use std::{
any::TypeId,
cell::{Cell, RefCell},
fmt,
marker::PhantomData,
sync::Arc,
thread_local,
};
use tracing_core::{
span,
subscriber::{Interest, Subscriber},
Event, Metadata,
};
/// A [`Layer`] that wraps an inner [`Layer`] and adds a [`Filter`] which
/// controls what spans and events are enabled for that layer.
///
/// This is returned by the [`Layer::with_filter`] method. See the
/// [documentation on per-layer filtering][plf] for details.
///
/// [`Filter`]: crate::layer::Filter
/// [plf]: crate::layer#per-layer-filtering
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
#[derive(Clone)]
pub struct Filtered<L, F, S> {
filter: F,
layer: L,
id: MagicPlfDowncastMarker,
_s: PhantomData<fn(S)>,
}
/// Uniquely identifies an individual [`Filter`] instance in the context of
/// a [`Subscriber`].
///
/// When adding a [`Filtered`] [`Layer`] to a [`Subscriber`], the [`Subscriber`]
/// generates a `FilterId` for that [`Filtered`] layer. The [`Filtered`] layer
/// will then use the generated ID to query whether a particular span was
/// previously enabled by that layer's [`Filter`].
///
/// **Note**: Currently, the [`Registry`] type provided by this crate is the
/// **only** [`Subscriber`] implementation capable of participating in per-layer
/// filtering. Therefore, the `FilterId` type cannot currently be constructed by
/// code outside of `tracing-subscriber`. In the future, new APIs will be added to `tracing-subscriber` to
/// allow non-Registry [`Subscriber`]s to also participate in per-layer
/// filtering. When those APIs are added, subscribers will be responsible
/// for generating and assigning `FilterId`s.
///
/// [`Filter`]: crate::layer::Filter
/// [`Subscriber`]: tracing_core::Subscriber
/// [`Layer`]: crate::layer::Layer
/// [`Registry`]: crate::registry::Registry
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
#[derive(Copy, Clone)]
pub struct FilterId(u64);
/// A bitmap tracking which [`FilterId`]s have enabled a given span or
/// event.
///
/// This is currently a private type that's used exclusively by the
/// [`Registry`]. However, in the future, this may become a public API, in order
/// to allow user subscribers to host [`Filter`]s.
///
/// [`Registry`]: crate::Registry
/// [`Filter`]: crate::layer::Filter
#[derive(Default, Copy, Clone, Eq, PartialEq)]
pub(crate) struct FilterMap {
bits: u64,
}
/// The current state of `enabled` calls to per-layer filters on this
/// thread.
///
/// When `Filtered::enabled` is called, the filter will set the bit
/// corresponding to its ID if the filter will disable the event/span being
/// filtered. When the event or span is recorded, the per-layer filter will
/// check its bit to determine if it disabled that event or span, and skip
/// forwarding the event or span to the inner layer if the bit is set. Once
/// a span or event has been skipped by a per-layer filter, it unsets its
/// bit, so that the `FilterMap` has been cleared for the next set of
/// `enabled` calls.
///
/// FilterState is also read by the `Registry`, for two reasons:
///
/// 1. When filtering a span, the Registry must store the `FilterMap`
/// generated by `Filtered::enabled` calls for that span as part of the
/// span's per-span data. This allows `Filtered` layers to determine
/// whether they had previously disabled a given span, and avoid showing it
/// to the wrapped layer if it was disabled.
///
/// This allows `Filtered` layers to also filter out the spans they
/// disable from span traversals (such as iterating over parents, etc).
/// 2. If all the bits are set, then every per-layer filter has decided it
/// doesn't want to enable that span or event. In that case, the
/// `Registry`'s `enabled` method will return `false`, so that
/// recording a span or event can be skipped entirely.
#[derive(Debug)]
pub(crate) struct FilterState {
enabled: Cell<FilterMap>,
// TODO(eliza): `Interest`s should _probably_ be `Copy`. The only reason
// they're not is our Obsessive Commitment to Forwards-Compatibility. If
// this changes in tracing-core`, we can make this a `Cell` rather than
// `RefCell`...
interest: RefCell<Option<Interest>>,
#[cfg(debug_assertions)]
counters: DebugCounters,
}
/// Extra counters added to `FilterState` used only to make debug assertions.
#[cfg(debug_assertions)]
#[derive(Debug, Default)]
struct DebugCounters {
/// How many per-layer filters have participated in the current `enabled`
/// call?
in_filter_pass: Cell<usize>,
/// How many per-layer filters have participated in the current `register_callsite`
/// call?
in_interest_pass: Cell<usize>,
}
thread_local! {
pub(crate) static FILTERING: FilterState = FilterState::new();
}
// === impl Filter ===
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for LevelFilter {
fn enabled(&self, meta: &Metadata<'_>, _: &Context<'_, S>) -> bool {
meta.level() <= self
}
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
if meta.level() <= self {
Interest::always()
} else {
Interest::never()
}
}
fn max_level_hint(&self) -> Option<LevelFilter> {
Some(*self)
}
}
impl<S> layer::Filter<S> for Arc<dyn layer::Filter<S> + Send + Sync + 'static> {
#[inline]
fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool {
(**self).enabled(meta, cx)
}
#[inline]
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
(**self).callsite_enabled(meta)
}
#[inline]
fn max_level_hint(&self) -> Option<LevelFilter> {
(**self).max_level_hint()
}
}
impl<S> layer::Filter<S> for Box<dyn layer::Filter<S> + Send + Sync + 'static> {
#[inline]
fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool {
(**self).enabled(meta, cx)
}
#[inline]
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
(**self).callsite_enabled(meta)
}
#[inline]
fn max_level_hint(&self) -> Option<LevelFilter> {
(**self).max_level_hint()
}
}
// === impl Filtered ===
impl<L, F, S> Filtered<L, F, S> {
/// Wraps the provided [`Layer`] so that it is filtered by the given
/// [`Filter`].
///
/// This is equivalent to calling the [`Layer::with_filter`] method.
///
/// See the [documentation on per-layer filtering][plf] for details.
///
/// [`Filter`]: crate::layer::Filter
/// [plf]: crate::layer#per-layer-filtering
pub fn new(layer: L, filter: F) -> Self {
Self {
layer,
filter,
id: MagicPlfDowncastMarker(FilterId::disabled()),
_s: PhantomData,
}
}
#[inline(always)]
fn id(&self) -> FilterId {
debug_assert!(
!self.id.0.is_disabled(),
"a `Filtered` layer was used, but it had no `FilterId`; \
was it registered with the subscriber?"
);
self.id.0
}
fn did_enable(&self, f: impl FnOnce()) {
FILTERING.with(|filtering| filtering.did_enable(self.id(), f))
}
}
impl<S, L, F> Layer<S> for Filtered<L, F, S>
where
S: Subscriber + for<'span> registry::LookupSpan<'span> + 'static,
F: layer::Filter<S> + 'static,
L: Layer<S>,
{
fn on_layer(&mut self, subscriber: &mut S) {
self.id = MagicPlfDowncastMarker(subscriber.register_filter());
self.layer.on_layer(subscriber);
}
// TODO(eliza): can we figure out a nice way to make the `Filtered` layer
// not call `is_enabled_for` in hooks that the inner layer doesn't actually
// have real implementations of? probably not...
//
// it would be cool if there was some wild rust reflection way of checking
// if a trait impl has the default impl of a trait method or not, but that's
// almsot certainly impossible...right?
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
let interest = self.filter.callsite_enabled(metadata);
// If the filter didn't disable the callsite, allow the inner layer to
// register it — since `register_callsite` is also used for purposes
// such as reserving/caching per-callsite data, we want the inner layer
// to be able to perform any other registration steps. However, we'll
// ignore its `Interest`.
if !interest.is_never() {
self.layer.register_callsite(metadata);
}
// Add our `Interest` to the current sum of per-layer filter `Interest`s
// for this callsite.
FILTERING.with(|filtering| filtering.add_interest(interest));
// don't short circuit! if the stack consists entirely of `Layer`s with
// per-layer filters, the `Registry` will return the actual `Interest`
// value that's the sum of all the `register_callsite` calls to those
// per-layer filters. if we returned an actual `never` interest here, a
// `Layered` layer would short-circuit and not allow any `Filtered`
// layers below us if _they_ are interested in the callsite.
Interest::always()
}
fn enabled(&self, metadata: &Metadata<'_>, cx: Context<'_, S>) -> bool {
let cx = cx.with_filter(self.id());
let enabled = self.filter.enabled(metadata, &cx);
FILTERING.with(|filtering| filtering.set(self.id(), enabled));
if enabled {
// If the filter enabled this metadata, ask the wrapped layer if
// _it_ wants it --- it might have a global filter.
self.layer.enabled(metadata, cx)
} else {
// Otherwise, return `true`. The _per-layer_ filter disabled this
// metadata, but returning `false` in `Layer::enabled` will
// short-circuit and globally disable the span or event. This is
// *not* what we want for per-layer filters, as other layers may
// still want this event. Returning `true` here means we'll continue
// asking the next layer in the stack.
//
// Once all per-layer filters have been evaluated, the `Registry`
// at the root of the stack will return `false` from its `enabled`
// method if *every* per-layer filter disabled this metadata.
// Otherwise, the individual per-layer filters will skip the next
// `new_span` or `on_event` call for their layer if *they* disabled
// the span or event, but it was not globally disabled.
true
}
}
fn new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, cx: Context<'_, S>) {
self.did_enable(|| {
self.layer.new_span(attrs, id, cx.with_filter(self.id()));
})
}
#[doc(hidden)]
fn max_level_hint(&self) -> Option<LevelFilter> {
self.filter.max_level_hint()
}
fn on_record(&self, span: &span::Id, values: &span::Record<'_>, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(span, self.id()) {
self.layer.on_record(span, values, cx)
}
}
fn on_follows_from(&self, span: &span::Id, follows: &span::Id, cx: Context<'_, S>) {
// only call `on_follows_from` if both spans are enabled by us
if cx.is_enabled_for(span, self.id()) && cx.is_enabled_for(follows, self.id()) {
self.layer
.on_follows_from(span, follows, cx.with_filter(self.id()))
}
}
fn on_event(&self, event: &Event<'_>, cx: Context<'_, S>) {
self.did_enable(|| {
self.layer.on_event(event, cx.with_filter(self.id()));
})
}
fn on_enter(&self, id: &span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(id, self.id()) {
self.layer.on_enter(id, cx)
}
}
fn on_exit(&self, id: &span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(id, self.id()) {
self.layer.on_exit(id, cx)
}
}
fn on_close(&self, id: span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(&id, self.id()) {
self.layer.on_close(id, cx)
}
}
// XXX(eliza): the existence of this method still makes me sad...
fn on_id_change(&self, old: &span::Id, new: &span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(old, self.id()) {
self.layer.on_id_change(old, new, cx)
}
}
#[doc(hidden)]
#[inline]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
match id {
id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()),
id if id == TypeId::of::<L>() => Some(&self.layer as *const _ as *const ()),
id if id == TypeId::of::<F>() => Some(&self.filter as *const _ as *const ()),
id if id == TypeId::of::<MagicPlfDowncastMarker>() => {
Some(&self.id as *const _ as *const ())
}
_ => self.layer.downcast_raw(id),
}
}
}
impl<F, L, S> fmt::Debug for Filtered<F, L, S>
where
F: fmt::Debug,
L: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Filtered")
.field("filter", &self.filter)
.field("layer", &self.layer)
.field("id", &self.id)
.finish()
}
}
// === impl FilterId ===
impl FilterId {
const fn disabled() -> Self {
Self(std::u64::MAX)
}
/// Returns a `FilterId` that will consider _all_ spans enabled.
pub(crate) const fn none() -> Self {
Self(0)
}
pub(crate) fn new(id: u8) -> Self {
assert!(id < 64, "filter IDs may not be greater than 64");
Self(1 << id as usize)
}
/// Combines two `FilterId`s, returning a new `FilterId` that will match a
/// [`FilterMap`] where the span was disabled by _either_ this `FilterId`
/// *or* the combined `FilterId`.
///
/// This method is called by [`Context`]s when adding the `FilterId` of a
/// [`Filtered`] layer to the context.
///
/// This is necessary for cases where we have a tree of nested [`Filtered`]
/// layers, like this:
///
/// ```text
/// Filtered {
/// filter1,
/// Layered {
/// layer1,
/// Filtered {
/// filter2,
/// layer2,
/// },
/// }
/// ```
///
/// We want `layer2` to be affected by both `filter1` _and_ `filter2`.
/// Without combining `FilterId`s, this works fine when filtering
/// `on_event`/`new_span`, because the outer `Filtered` layer (`filter1`)
/// won't call the inner layer's `on_event` or `new_span` callbacks if it
/// disabled the event/span.
///
/// However, it _doesn't_ work when filtering span lookups and traversals
/// (e.g. `scope`). This is because the [`Context`] passed to `layer2`
/// would set its filter ID to the filter ID of `filter2`, and would skip
/// spans that were disabled by `filter2`. However, what if a span was
/// disabled by `filter1`? We wouldn't see it in `new_span`, but we _would_
/// see it in lookups and traversals...which we don't want.
///
/// When a [`Filtered`] layer adds its ID to a [`Context`], it _combines_ it
/// with any previous filter ID that the context had, rather than replacing
/// it. That way, `layer2`'s context will check if a span was disabled by
/// `filter1` _or_ `filter2`. The way we do this, instead of representing
/// `FilterId`s as a number number that we shift a 1 over by to get a mask,
/// we just store the actual mask,so we can combine them with a bitwise-OR.
///
/// For example, if we consider the following case (pretending that the
/// masks are 8 bits instead of 64 just so i don't have to write out a bunch
/// of extra zeroes):
///
/// - `filter1` has the filter id 1 (`0b0000_0001`)
/// - `filter2` has the filter id 2 (`0b0000_0010`)
///
/// A span that gets disabled by filter 1 would have the [`FilterMap`] with
/// bits `0b0000_0001`.
///
/// If the `FilterId` was internally represented as `(bits to shift + 1),
/// when `layer2`'s [`Context`] checked if it enabled the span, it would
/// make the mask `0b0000_0010` (`1 << 1`). That bit would not be set in the
/// [`FilterMap`], so it would see that it _didn't_ disable the span. Which
/// is *true*, it just doesn't reflect the tree-like shape of the actual
/// subscriber.
///
/// By having the IDs be masks instead of shifts, though, when the
/// [`Filtered`] with `filter2` gets the [`Context`] with `filter1`'s filter ID,
/// instead of replacing it, it ors them together:
///
/// ```ignore
/// 0b0000_0001 | 0b0000_0010 == 0b0000_0011;
/// ```
///
/// We then test if the span was disabled by seeing if _any_ bits in the
/// mask are `1`:
///
/// ```ignore
/// filtermap & mask != 0;
/// 0b0000_0001 & 0b0000_0011 != 0;
/// 0b0000_0001 != 0;
/// true;
/// ```
///
/// [`Context`]: crate::layer::Context
pub(crate) fn and(self, FilterId(other): Self) -> Self {
// If this mask is disabled, just return the other --- otherwise, we
// would always see that every span is disabled.
if self.0 == Self::disabled().0 {
return Self(other);
}
Self(self.0 | other)
}
fn is_disabled(self) -> bool {
self.0 == Self::disabled().0
}
}
impl fmt::Debug for FilterId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// don't print a giant set of the numbers 0..63 if the filter ID is disabled.
if self.0 == Self::disabled().0 {
return f
.debug_tuple("FilterId")
.field(&format_args!("DISABLED"))
.finish();
}
if f.alternate() {
f.debug_struct("FilterId")
.field("ids", &format_args!("{:?}", FmtBitset(self.0)))
.field("bits", &format_args!("{:b}", self.0))
.finish()
} else {
f.debug_tuple("FilterId").field(&FmtBitset(self.0)).finish()
}
}
}
impl fmt::Binary for FilterId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("FilterId")
.field(&format_args!("{:b}", self.0))
.finish()
}
}
// === impl FilterMap ===
impl FilterMap {
pub(crate) fn set(self, FilterId(mask): FilterId, enabled: bool) -> Self {
if mask == std::u64::MAX {
return self;
}
if enabled {
Self {
bits: self.bits & (!mask),
}
} else {
Self {
bits: self.bits | mask,
}
}
}
#[inline]
pub(crate) fn is_enabled(self, FilterId(mask): FilterId) -> bool {
self.bits & mask == 0
}
#[inline]
pub(crate) fn any_enabled(self) -> bool {
self.bits != std::u64::MAX
}
}
impl fmt::Debug for FilterMap {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let alt = f.alternate();
let mut s = f.debug_struct("FilterMap");
s.field("disabled_by", &format_args!("{:?}", &FmtBitset(self.bits)));
if alt {
s.field("bits", &format_args!("{:b}", self.bits));
}
s.finish()
}
}
impl fmt::Binary for FilterMap {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FilterMap")
.field("bits", &format_args!("{:b}", self.bits))
.finish()
}
}
// === impl FilterState ===
impl FilterState {
fn new() -> Self {
Self {
enabled: Cell::new(FilterMap::default()),
interest: RefCell::new(None),
#[cfg(debug_assertions)]
counters: DebugCounters::default(),
}
}
fn set(&self, filter: FilterId, enabled: bool) {
#[cfg(debug_assertions)]
{
let in_current_pass = self.counters.in_filter_pass.get();
if in_current_pass == 0 {
debug_assert_eq!(self.enabled.get(), FilterMap::default());
}
self.counters.in_filter_pass.set(in_current_pass + 1);
debug_assert_eq!(
self.counters.in_interest_pass.get(),
0,
"if we are in or starting a filter pass, we must not be in an interest pass."
)
}
self.enabled.set(self.enabled.get().set(filter, enabled))
}
fn add_interest(&self, interest: Interest) {
let mut curr_interest = self.interest.borrow_mut();
#[cfg(debug_assertions)]
{
let in_current_pass = self.counters.in_interest_pass.get();
if in_current_pass == 0 {
debug_assert!(curr_interest.is_none());
}
self.counters.in_interest_pass.set(in_current_pass + 1);
}
if let Some(curr_interest) = curr_interest.as_mut() {
if (curr_interest.is_always() && !interest.is_always())
|| (curr_interest.is_never() && !interest.is_never())
{
*curr_interest = Interest::sometimes();
}
// If the two interests are the same, do nothing. If the current
// interest is `sometimes`, stay sometimes.
} else {
*curr_interest = Some(interest);
}
}
pub(crate) fn event_enabled() -> bool {
FILTERING
.try_with(|this| {
let enabled = this.enabled.get().any_enabled();
#[cfg(debug_assertions)]
{
if this.counters.in_filter_pass.get() == 0 {
debug_assert_eq!(this.enabled.get(), FilterMap::default());
}
// Nothing enabled this event, we won't tick back down the
// counter in `did_enable`. Reset it.
if !enabled {
this.counters.in_filter_pass.set(0);
}
}
enabled
})
.unwrap_or(true)
}
/// Executes a closure if the filter with the provided ID did not disable
/// the current span/event.
///
/// This is used to implement the `on_event` and `new_span` methods for
/// `Filtered`.
fn did_enable(&self, filter: FilterId, f: impl FnOnce()) {
let map = self.enabled.get();
if map.is_enabled(filter) {
// If the filter didn't disable the current span/event, run the
// callback.
f();
} else {
// Otherwise, if this filter _did_ disable the span or event
// currently being processed, clear its bit from this thread's
// `FilterState`. The bit has already been "consumed" by skipping
// this callback, and we need to ensure that the `FilterMap` for
// this thread is reset when the *next* `enabled` call occurs.
self.enabled.set(map.set(filter, true));
}
#[cfg(debug_assertions)]
{
let in_current_pass = self.counters.in_filter_pass.get();
if in_current_pass <= 1 {
debug_assert_eq!(self.enabled.get(), FilterMap::default());
}
self.counters
.in_filter_pass
.set(in_current_pass.saturating_sub(1));
debug_assert_eq!(
self.counters.in_interest_pass.get(),
0,
"if we are in a filter pass, we must not be in an interest pass."
)
}
}
/// Clears the current in-progress filter state.
///
/// This resets the [`FilterMap`] and current [`Interest`] as well as
/// clearing the debug counters.
pub(crate) fn clear_enabled() {
// Drop the `Result` returned by `try_with` --- if we are in the middle
// a panic and the thread-local has been torn down, that's fine, just
// ignore it ratehr than panicking.
let _ = FILTERING.try_with(|filtering| {
filtering.enabled.set(FilterMap::default());
#[cfg(debug_assertions)]
filtering.counters.in_filter_pass.set(0);
});
}
pub(crate) fn take_interest() -> Option<Interest> {
FILTERING
.try_with(|filtering| {
#[cfg(debug_assertions)]
{
if filtering.counters.in_interest_pass.get() == 0 {
debug_assert!(filtering.interest.try_borrow().ok()?.is_none());
}
filtering.counters.in_interest_pass.set(0);
}
filtering.interest.try_borrow_mut().ok()?.take()
})
.ok()?
}
pub(crate) fn filter_map(&self) -> FilterMap {
let map = self.enabled.get();
#[cfg(debug_assertions)]
{
if self.counters.in_filter_pass.get() == 0 {
debug_assert_eq!(map, FilterMap::default());
}
}
map
}
}
/// This is a horrible and bad abuse of the downcasting system to expose
/// *internally* whether a layer has per-layer filtering, within
/// `tracing-subscriber`, without exposing a public API for it.
///
/// If a `Layer` has per-layer filtering, it will downcast to a
/// `MagicPlfDowncastMarker`. Since layers which contain other layers permit
/// downcasting to recurse to their children, this will do the Right Thing with
/// layers like Reload, Option, etc.
///
/// Why is this a wrapper around the `FilterId`, you may ask? Because
/// downcasting works by returning a pointer, and we don't want to risk
/// introducing UB by constructing pointers that _don't_ point to a valid
/// instance of the type they claim to be. In this case, we don't _intend_ for
/// this pointer to be dereferenced, so it would actually be fine to return one
/// that isn't a valid pointer...but we can't guarantee that the caller won't
/// (accidentally) dereference it, so it's better to be safe than sorry. We
/// could, alternatively, add an additional field to the type that's used only
/// for returning pointers to as as part of the evil downcasting hack, but I
/// thought it was nicer to just add a `repr(transparent)` wrapper to the
/// existing `FilterId` field, since it won't make the struct any bigger.
///
/// Don't worry, this isn't on the test. :)
#[derive(Clone, Copy)]
#[repr(transparent)]
struct MagicPlfDowncastMarker(FilterId);
impl fmt::Debug for MagicPlfDowncastMarker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Just pretend that `MagicPlfDowncastMarker` doesn't exist for
// `fmt::Debug` purposes...if no one *sees* it in their `Debug` output,
// they don't have to know I thought this code would be a good idea.
fmt::Debug::fmt(&self.0, f)
}
}
pub(crate) fn is_plf_downcast_marker(type_id: TypeId) -> bool {
type_id == TypeId::of::<MagicPlfDowncastMarker>()
}
/// Does a type implementing `Subscriber` contain any per-layer filters?
pub(crate) fn subscriber_has_plf<S>(subscriber: &S) -> bool
where
S: Subscriber,
{
(subscriber as &dyn Subscriber).is::<MagicPlfDowncastMarker>()
}
/// Does a type implementing `Layer` contain any per-layer filters?
pub(crate) fn layer_has_plf<L, S>(layer: &L) -> bool
where
L: Layer<S>,
S: Subscriber,
{
unsafe {
// Safety: we're not actually *doing* anything with this pointer --- we
// only care about the `Option`, which we're turning into a `bool`. So
// even if the layer decides to be evil and give us some kind of invalid
// pointer, we don't ever dereference it, so this is always safe.
layer.downcast_raw(TypeId::of::<MagicPlfDowncastMarker>())
}
.is_some()
}
struct FmtBitset(u64);
impl fmt::Debug for FmtBitset {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut set = f.debug_set();
for bit in 0..64 {
// if the `bit`-th bit is set, add it to the debug set
if self.0 & (1 << bit) != 0 {
set.entry(&bit);
}
}
set.finish()
}
}