1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Copyright 2019, 2021 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Verification of compact proofs for Merkle-Patricia tries.

use crate::{
	nibble::LeftNibbleSlice,
	nibble_ops::NIBBLE_LENGTH,
	node::{Node, NodeHandle, Value},
	rstd::{convert::TryInto, iter::Peekable, marker::PhantomData, result::Result, vec, vec::Vec},
	CError, ChildReference, NodeCodec, TrieHash, TrieLayout,
};
use hash_db::Hasher;

/// Errors that may occur during proof verification. Most of the errors types simply indicate that
/// the proof is invalid with respect to the statement being verified, and the exact error type can
/// be used for debugging.
#[derive(PartialEq, Eq)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum Error<HO, CE> {
	/// The statement being verified contains multiple key-value pairs with the same key. The
	/// parameter is the duplicated key.
	DuplicateKey(Vec<u8>),
	/// The proof contains at least one extraneous node.
	ExtraneousNode,
	/// The proof contains at least one extraneous value which should have been omitted from the
	/// proof.
	ExtraneousValue(Vec<u8>),
	/// The proof contains at least one extraneous hash reference the should have been omitted.
	ExtraneousHashReference(HO),
	/// The proof contains an invalid child reference that exceeds the hash length.
	InvalidChildReference(Vec<u8>),
	/// The proof indicates that an expected value was not found in the trie.
	ValueMismatch(Vec<u8>),
	/// The proof is missing trie nodes required to verify.
	IncompleteProof,
	/// The root hash computed from the proof is incorrect.
	RootMismatch(HO),
	/// One of the proof nodes could not be decoded.
	DecodeError(CE),
}

#[cfg(feature = "std")]
impl<HO: std::fmt::Debug, CE: std::error::Error> std::fmt::Display for Error<HO, CE> {
	fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
		match self {
			Error::DuplicateKey(key) =>
				write!(f, "Duplicate key in input statement: key={:?}", key),
			Error::ExtraneousNode => write!(f, "Extraneous node found in proof"),
			Error::ExtraneousValue(key) =>
				write!(f, "Extraneous value found in proof should have been omitted: key={:?}", key),
			Error::ExtraneousHashReference(hash) => write!(
				f,
				"Extraneous hash reference found in proof should have been omitted: hash={:?}",
				hash
			),
			Error::InvalidChildReference(data) =>
				write!(f, "Invalid child reference exceeds hash length: {:?}", data),
			Error::ValueMismatch(key) =>
				write!(f, "Expected value was not found in the trie: key={:?}", key),
			Error::IncompleteProof => write!(f, "Proof is incomplete -- expected more nodes"),
			Error::RootMismatch(hash) => write!(f, "Computed incorrect root {:?} from proof", hash),
			Error::DecodeError(err) => write!(f, "Unable to decode proof node: {}", err),
		}
	}
}

#[cfg(feature = "std")]
impl<HO: std::fmt::Debug, CE: std::error::Error + 'static> std::error::Error for Error<HO, CE> {
	fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
		match self {
			Error::DecodeError(err) => Some(err),
			_ => None,
		}
	}
}

struct StackEntry<'a, L: TrieLayout> {
	/// The prefix is the nibble path to the node in the trie.
	prefix: LeftNibbleSlice<'a>,
	node: Node<'a>,
	is_inline: bool,
	/// The value associated with this trie node.
	value: Option<Value<'a>>,
	/// The next entry in the stack is a child of the preceding entry at this index. For branch
	/// nodes, the index is in [0, NIBBLE_LENGTH] and for extension nodes, the index is in [0, 1].
	child_index: usize,
	/// The child references to use in reconstructing the trie nodes.
	children: Vec<Option<ChildReference<TrieHash<L>>>>,
	/// Technical to attach lifetime to entry.
	next_value_hash: Option<TrieHash<L>>,
	_marker: PhantomData<L>,
}

impl<'a, L: TrieLayout> StackEntry<'a, L> {
	fn new(
		node_data: &'a [u8],
		prefix: LeftNibbleSlice<'a>,
		is_inline: bool,
	) -> Result<Self, Error<TrieHash<L>, CError<L>>> {
		let node = L::Codec::decode(&node_data[..]).map_err(Error::DecodeError)?;
		let children_len = match &node {
			Node::Empty | Node::Leaf(..) => 0,
			Node::Extension(..) => 1,
			Node::Branch(..) | Node::NibbledBranch(..) => NIBBLE_LENGTH,
		};
		let value = match &node {
			Node::Empty | Node::Extension(_, _) => None,
			Node::Leaf(_, value) => Some(value.clone()),
			Node::Branch(_, value) | Node::NibbledBranch(_, _, value) => value.clone(),
		};
		Ok(StackEntry {
			node,
			is_inline,
			prefix,
			value,
			child_index: 0,
			children: vec![None; children_len],
			next_value_hash: None,
			_marker: PhantomData::default(),
		})
	}

	fn value(&self) -> Option<Value> {
		if let Some(hash) = self.next_value_hash.as_ref() {
			Some(Value::Node(hash.as_ref()))
		} else {
			self.value.clone()
		}
	}

	/// Encode this entry to an encoded trie node with data properly reconstructed.
	fn encode_node(mut self) -> Result<Vec<u8>, Error<TrieHash<L>, CError<L>>> {
		self.complete_children()?;
		Ok(match self.node {
			Node::Empty => L::Codec::empty_node().to_vec(),
			Node::Leaf(partial, _) => {
				let value = self.value().expect(
					"value is assigned to Some in StackEntry::new; \
						value is only ever reassigned in the ValueMatch::MatchesLeaf match \
						clause, which assigns only to Some",
				);
				L::Codec::leaf_node(partial.right_iter(), partial.len(), value)
			},
			Node::Extension(partial, _) => {
				let child =
					self.children[0].expect("the child must be completed since child_index is 1");
				L::Codec::extension_node(partial.right_iter(), partial.len(), child)
			},
			Node::Branch(_, _) => L::Codec::branch_node(self.children.iter(), self.value()),
			Node::NibbledBranch(partial, _, _) => L::Codec::branch_node_nibbled(
				partial.right_iter(),
				partial.len(),
				self.children.iter(),
				self.value(),
			),
		})
	}

	fn advance_child_index<I>(
		&mut self,
		child_prefix: LeftNibbleSlice<'a>,
		proof_iter: &mut I,
	) -> Result<Self, Error<TrieHash<L>, CError<L>>>
	where
		I: Iterator<Item = &'a [u8]>,
	{
		match self.node {
			Node::Extension(_, child) => {
				// Guaranteed because of sorted keys order.
				assert_eq!(self.child_index, 0);
				Self::make_child_entry(proof_iter, child, child_prefix)
			},
			Node::Branch(children, _) | Node::NibbledBranch(_, children, _) => {
				// because this is a branch
				assert!(child_prefix.len() > 0);
				let child_index = child_prefix
					.at(child_prefix.len() - 1)
					.expect("it's less than prefix.len(); qed") as usize;
				while self.child_index < child_index {
					if let Some(child) = children[self.child_index] {
						let child_ref = child.try_into().map_err(Error::InvalidChildReference)?;
						self.children[self.child_index] = Some(child_ref);
					}
					self.child_index += 1;
				}
				let child = children[self.child_index].expect("guaranteed by advance_item");
				Self::make_child_entry(proof_iter, child, child_prefix)
			},
			_ => panic!("cannot have children"),
		}
	}

	/// Populate the remaining references in `children` with references copied the node itself.
	fn complete_children(&mut self) -> Result<(), Error<TrieHash<L>, CError<L>>> {
		match self.node {
			Node::Extension(_, child) if self.child_index == 0 => {
				let child_ref = child.try_into().map_err(Error::InvalidChildReference)?;
				self.children[self.child_index] = Some(child_ref);
				self.child_index += 1;
			},
			Node::Branch(children, _) | Node::NibbledBranch(_, children, _) => {
				while self.child_index < NIBBLE_LENGTH {
					if let Some(child) = children[self.child_index] {
						let child_ref = child.try_into().map_err(Error::InvalidChildReference)?;
						self.children[self.child_index] = Some(child_ref);
					}
					self.child_index += 1;
				}
			},
			_ => {},
		}
		Ok(())
	}

	fn make_child_entry<I>(
		proof_iter: &mut I,
		child: NodeHandle<'a>,
		prefix: LeftNibbleSlice<'a>,
	) -> Result<Self, Error<TrieHash<L>, CError<L>>>
	where
		I: Iterator<Item = &'a [u8]>,
	{
		match child {
			NodeHandle::Inline(data) =>
				if data.is_empty() {
					let node_data = proof_iter.next().ok_or(Error::IncompleteProof)?;
					StackEntry::new(node_data, prefix, false)
				} else {
					StackEntry::new(data, prefix, true)
				},
			NodeHandle::Hash(data) => {
				let mut hash = TrieHash::<L>::default();
				if data.len() != hash.as_ref().len() {
					return Err(Error::InvalidChildReference(data.to_vec()))
				}
				hash.as_mut().copy_from_slice(data);
				Err(Error::ExtraneousHashReference(hash))
			},
		}
	}

	fn set_value(&mut self, value: &'a [u8]) {
		self.value = if L::MAX_INLINE_VALUE.map(|max| value.len() < max as usize).unwrap_or(true) {
			Some(Value::Inline(value))
		} else {
			let hash = L::Hash::hash(value);
			self.next_value_hash = Some(hash);
			// will be replace on encode
			None
		};
	}

	fn advance_item<I>(
		&mut self,
		items_iter: &mut Peekable<I>,
	) -> Result<Step<'a>, Error<TrieHash<L>, CError<L>>>
	where
		I: Iterator<Item = (&'a [u8], Option<&'a [u8]>)>,
	{
		let step = loop {
			if let Some((key_bytes, value)) = items_iter.peek().cloned() {
				let key = LeftNibbleSlice::new(key_bytes);
				if key.starts_with(&self.prefix) {
					match match_key_to_node(&key, self.prefix.len(), &self.node) {
						ValueMatch::MatchesLeaf =>
							if let Some(value) = value {
								self.set_value(value);
							} else {
								return Err(Error::ValueMismatch(key_bytes.to_vec()))
							},
						ValueMatch::MatchesBranch =>
							if let Some(value) = value {
								self.set_value(value);
							} else {
								self.value = None;
							},
						ValueMatch::NotFound =>
							if value.is_some() {
								return Err(Error::ValueMismatch(key_bytes.to_vec()))
							},
						ValueMatch::NotOmitted =>
							return Err(Error::ExtraneousValue(key_bytes.to_vec())),
						ValueMatch::IsChild(child_prefix) => break Step::Descend(child_prefix),
					}

					items_iter.next();
					continue
				}
			}
			break Step::UnwindStack
		};
		Ok(step)
	}
}

enum ValueMatch<'a> {
	/// The key matches a leaf node, so the value at the key must be present.
	MatchesLeaf,
	/// The key matches a branch node, so the value at the key may or may not be present.
	MatchesBranch,
	/// The key was not found to correspond to value in the trie, so must not be present.
	NotFound,
	/// The key matches a location in trie, but the value was not omitted.
	NotOmitted,
	/// The key may match below a child of this node. Parameter is the prefix of the child node.
	IsChild(LeftNibbleSlice<'a>),
}

/// Determines whether a node on the stack carries a value at the given key or whether any nodes
/// in the subtrie do. The prefix of the node is given by the first `prefix_len` nibbles of `key`.
fn match_key_to_node<'a>(
	key: &LeftNibbleSlice<'a>,
	prefix_len: usize,
	node: &Node,
) -> ValueMatch<'a> {
	match node {
		Node::Empty => ValueMatch::NotFound,
		Node::Leaf(partial, value) => {
			if key.contains(partial, prefix_len) && key.len() == prefix_len + partial.len() {
				match value {
					Value::Node(..) => ValueMatch::NotOmitted,
					Value::Inline(value) =>
						if value.is_empty() {
							ValueMatch::MatchesLeaf
						} else {
							ValueMatch::NotOmitted
						},
				}
			} else {
				ValueMatch::NotFound
			}
		},
		Node::Extension(partial, _) =>
			if key.contains(partial, prefix_len) {
				ValueMatch::IsChild(key.truncate(prefix_len + partial.len()))
			} else {
				ValueMatch::NotFound
			},
		Node::Branch(children, value) =>
			match_key_to_branch_node(key, prefix_len, children, value.as_ref()),
		Node::NibbledBranch(partial, children, value) =>
			if key.contains(partial, prefix_len) {
				match_key_to_branch_node(key, prefix_len + partial.len(), children, value.as_ref())
			} else {
				ValueMatch::NotFound
			},
	}
}

/// Determines whether a branch node on the stack carries a value at the given key or whether any
/// nodes in the subtrie do. The key of the branch node value is given by the first
/// `prefix_plus_partial_len` nibbles of `key`.
fn match_key_to_branch_node<'a>(
	key: &LeftNibbleSlice<'a>,
	prefix_plus_partial_len: usize,
	children: &[Option<NodeHandle>; NIBBLE_LENGTH],
	value: Option<&Value>,
) -> ValueMatch<'a> {
	if key.len() == prefix_plus_partial_len {
		if value.is_none() {
			ValueMatch::MatchesBranch
		} else {
			ValueMatch::NotOmitted
		}
	} else {
		let index =
			key.at(prefix_plus_partial_len).expect("it's less than prefix.len(); qed") as usize;
		if children[index].is_some() {
			ValueMatch::IsChild(key.truncate(prefix_plus_partial_len + 1))
		} else {
			ValueMatch::NotFound
		}
	}
}

enum Step<'a> {
	Descend(LeftNibbleSlice<'a>),
	UnwindStack,
}

/// Verify a compact proof for key-value pairs in a trie given a root hash.
pub fn verify_proof<'a, L, I, K, V>(
	root: &<L::Hash as Hasher>::Out,
	proof: &[Vec<u8>],
	items: I,
) -> Result<(), Error<TrieHash<L>, CError<L>>>
where
	L: TrieLayout,
	I: IntoIterator<Item = &'a (K, Option<V>)>,
	K: 'a + AsRef<[u8]>,
	V: 'a + AsRef<[u8]>,
{
	// Sort items.
	let mut items = items
		.into_iter()
		.map(|(k, v)| (k.as_ref(), v.as_ref().map(|v| v.as_ref())))
		.collect::<Vec<_>>();
	items.sort();

	if items.is_empty() {
		return if proof.is_empty() { Ok(()) } else { Err(Error::ExtraneousNode) }
	}

	// Check for duplicates.
	for i in 1..items.len() {
		if items[i].0 == items[i - 1].0 {
			return Err(Error::DuplicateKey(items[i].0.to_vec()))
		}
	}

	// Iterate simultaneously in order through proof nodes and key-value pairs to verify.
	let mut proof_iter = proof.iter().map(|i| i.as_slice());
	let mut items_iter = items.into_iter().peekable();

	// A stack of child references to fill in omitted branch children for later trie nodes in the
	// proof.
	let mut stack: Vec<StackEntry<L>> = Vec::new();

	let root_node = match proof_iter.next() {
		Some(node) => node,
		None => return Err(Error::IncompleteProof),
	};
	let mut last_entry = StackEntry::<L>::new(root_node, LeftNibbleSlice::new(&[]), false)?;

	loop {
		// Insert omitted value.
		match last_entry.advance_item(&mut items_iter)? {
			Step::Descend(child_prefix) => {
				let next_entry = last_entry.advance_child_index(child_prefix, &mut proof_iter)?;
				stack.push(last_entry);
				last_entry = next_entry;
			},
			Step::UnwindStack => {
				let is_inline = last_entry.is_inline;
				let node_data = last_entry.encode_node()?;

				let child_ref = if is_inline {
					if node_data.len() > L::Hash::LENGTH {
						return Err(Error::InvalidChildReference(node_data))
					}
					let mut hash = <TrieHash<L>>::default();
					hash.as_mut()[..node_data.len()].copy_from_slice(node_data.as_ref());
					ChildReference::Inline(hash, node_data.len())
				} else {
					let hash = L::Hash::hash(&node_data);
					ChildReference::Hash(hash)
				};

				if let Some(entry) = stack.pop() {
					last_entry = entry;
					last_entry.children[last_entry.child_index] = Some(child_ref);
					last_entry.child_index += 1;
				} else {
					if proof_iter.next().is_some() {
						return Err(Error::ExtraneousNode)
					}
					let computed_root = match child_ref {
						ChildReference::Hash(hash) => hash,
						ChildReference::Inline(_, _) =>
							panic!("the bottom item on the stack has is_inline = false; qed"),
					};
					if computed_root != *root {
						return Err(Error::RootMismatch(computed_root))
					}
					break
				}
			},
		}
	}

	Ok(())
}