1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//! Memory management for linear memories.
//!
//! `RuntimeLinearMemory` is to WebAssembly linear memories what `Table` is to WebAssembly tables.

use crate::mmap::Mmap;
use crate::vmcontext::VMMemoryDefinition;
use crate::MemoryImage;
use crate::MemoryImageSlot;
use crate::Store;
use anyhow::Error;
use anyhow::{bail, format_err, Result};
use more_asserts::{assert_ge, assert_le};
use std::convert::TryFrom;
use std::sync::Arc;
use wasmtime_environ::{MemoryPlan, MemoryStyle, WASM32_MAX_PAGES, WASM64_MAX_PAGES};

const WASM_PAGE_SIZE: usize = wasmtime_environ::WASM_PAGE_SIZE as usize;
const WASM_PAGE_SIZE_U64: u64 = wasmtime_environ::WASM_PAGE_SIZE as u64;

/// A memory allocator
pub trait RuntimeMemoryCreator: Send + Sync {
    /// Create new RuntimeLinearMemory
    fn new_memory(
        &self,
        plan: &MemoryPlan,
        minimum: usize,
        maximum: Option<usize>,
        // Optionally, a memory image for CoW backing.
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Box<dyn RuntimeLinearMemory>>;
}

/// A default memory allocator used by Wasmtime
pub struct DefaultMemoryCreator;

impl RuntimeMemoryCreator for DefaultMemoryCreator {
    /// Create new MmapMemory
    fn new_memory(
        &self,
        plan: &MemoryPlan,
        minimum: usize,
        maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Box<dyn RuntimeLinearMemory>> {
        Ok(Box::new(MmapMemory::new(
            plan,
            minimum,
            maximum,
            memory_image,
        )?))
    }
}

/// A linear memory
pub trait RuntimeLinearMemory: Send + Sync {
    /// Returns the number of allocated bytes.
    fn byte_size(&self) -> usize;

    /// Returns the maximum number of bytes the memory can grow to.
    /// Returns `None` if the memory is unbounded.
    fn maximum_byte_size(&self) -> Option<usize>;

    /// Grow memory to the specified amount of bytes.
    ///
    /// Returns an error if memory can't be grown by the specified amount
    /// of bytes.
    fn grow_to(&mut self, size: usize) -> Result<()>;

    /// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm
    /// code.
    fn vmmemory(&mut self) -> VMMemoryDefinition;

    /// Does this memory need initialization? It may not if it already
    /// has initial contents courtesy of the `MemoryImage` passed to
    /// `RuntimeMemoryCreator::new_memory()`.
    fn needs_init(&self) -> bool;

    /// For the pooling allocator, we must be able to downcast this trait to its
    /// underlying structure.
    #[cfg(feature = "pooling-allocator")]
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
}

/// A linear memory instance.
#[derive(Debug)]
pub struct MmapMemory {
    // The underlying allocation.
    mmap: Mmap,

    // The number of bytes that are accessible in `mmap` and available for
    // reading and writing.
    //
    // This region starts at `pre_guard_size` offset from the base of `mmap`.
    accessible: usize,

    // The optional maximum accessible size, in bytes, for this linear memory.
    //
    // Note that this maximum does not factor in guard pages, so this isn't the
    // maximum size of the linear address space reservation for this memory.
    maximum: Option<usize>,

    // The amount of extra bytes to reserve whenever memory grows. This is
    // specified so that the cost of repeated growth is amortized.
    extra_to_reserve_on_growth: usize,

    // Size in bytes of extra guard pages before the start and after the end to
    // optimize loads and stores with constant offsets.
    pre_guard_size: usize,
    offset_guard_size: usize,

    // An optional CoW mapping that provides the initial content of this
    // MmapMemory, if mapped.
    memory_image: Option<MemoryImageSlot>,
}

impl MmapMemory {
    /// Create a new linear memory instance with specified minimum and maximum number of wasm pages.
    pub fn new(
        plan: &MemoryPlan,
        minimum: usize,
        mut maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        // It's a programmer error for these two configuration values to exceed
        // the host available address space, so panic if such a configuration is
        // found (mostly an issue for hypothetical 32-bit hosts).
        let offset_guard_bytes = usize::try_from(plan.offset_guard_size).unwrap();
        let pre_guard_bytes = usize::try_from(plan.pre_guard_size).unwrap();

        let (alloc_bytes, extra_to_reserve_on_growth) = match plan.style {
            // Dynamic memories start with the minimum size plus the `reserve`
            // amount specified to grow into.
            MemoryStyle::Dynamic { reserve } => (minimum, usize::try_from(reserve).unwrap()),

            // Static memories will never move in memory and consequently get
            // their entire allocation up-front with no extra room to grow into.
            // Note that the `maximum` is adjusted here to whatever the smaller
            // of the two is, the `maximum` given or the `bound` specified for
            // this memory.
            MemoryStyle::Static { bound } => {
                assert_ge!(bound, plan.memory.minimum);
                let bound_bytes =
                    usize::try_from(bound.checked_mul(WASM_PAGE_SIZE_U64).unwrap()).unwrap();
                maximum = Some(bound_bytes.min(maximum.unwrap_or(usize::MAX)));
                (bound_bytes, 0)
            }
        };
        let request_bytes = pre_guard_bytes
            .checked_add(alloc_bytes)
            .and_then(|i| i.checked_add(extra_to_reserve_on_growth))
            .and_then(|i| i.checked_add(offset_guard_bytes))
            .ok_or_else(|| format_err!("cannot allocate {} with guard regions", minimum))?;

        let mut mmap = Mmap::accessible_reserved(0, request_bytes)?;
        if minimum > 0 {
            mmap.make_accessible(pre_guard_bytes, minimum)?;
        }

        // If a memory image was specified, try to create the MemoryImageSlot on
        // top of our mmap.
        let memory_image = match memory_image {
            Some(image) => {
                let base = unsafe { mmap.as_mut_ptr().add(pre_guard_bytes) };
                let mut slot = MemoryImageSlot::create(
                    base.cast(),
                    minimum,
                    alloc_bytes + extra_to_reserve_on_growth,
                );
                slot.instantiate(minimum, Some(image))?;
                // On drop, we will unmap our mmap'd range that this slot was
                // mapped on top of, so there is no need for the slot to wipe
                // it with an anonymous mapping first.
                slot.no_clear_on_drop();
                Some(slot)
            }
            None => None,
        };

        Ok(Self {
            mmap,
            accessible: minimum,
            maximum,
            pre_guard_size: pre_guard_bytes,
            offset_guard_size: offset_guard_bytes,
            extra_to_reserve_on_growth,
            memory_image,
        })
    }
}

impl RuntimeLinearMemory for MmapMemory {
    fn byte_size(&self) -> usize {
        self.accessible
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.maximum
    }

    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        VMMemoryDefinition {
            base: unsafe { self.mmap.as_mut_ptr().add(self.pre_guard_size) },
            current_length: self.accessible,
        }
    }

    fn needs_init(&self) -> bool {
        // If we're using a CoW mapping, then no initialization
        // is needed.
        self.memory_image.is_none()
    }

    #[cfg(feature = "pooling-allocator")]
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }
}

/// A "static" memory where the lifetime of the backing memory is managed
/// elsewhere. Currently used with the pooling allocator.
struct ExternalMemory {
    /// The memory in the host for this wasm memory. The length of this
    /// slice is the maximum size of the memory that can be grown to.
    base: &'static mut [u8],

    /// The current size, in bytes, of this memory.
    size: usize,

    /// A callback which makes portions of `base` accessible for when memory
    /// is grown. Otherwise it's expected that accesses to `base` will
    /// fault.
    make_accessible: Option<fn(*mut u8, usize) -> Result<()>>,

    /// The image management, if any, for this memory. Owned here and
    /// returned to the pooling allocator when termination occurs.
    memory_image: Option<MemoryImageSlot>,
}

impl ExternalMemory {
    fn new(
        base: &'static mut [u8],
        initial_size: usize,
        maximum_size: Option<usize>,
        make_accessible: Option<fn(*mut u8, usize) -> Result<()>>,
        memory_image: Option<MemoryImageSlot>,
    ) -> Result<Self> {
        if base.len() < initial_size {
            bail!(
                "initial memory size of {} exceeds the pooling allocator's \
                 configured maximum memory size of {} bytes",
                initial_size,
                base.len(),
            );
        }

        // Only use the part of the slice that is necessary.
        let base = match maximum_size {
            Some(max) if max < base.len() => &mut base[..max],
            _ => base,
        };

        if let Some(make_accessible) = make_accessible {
            if initial_size > 0 {
                make_accessible(base.as_mut_ptr(), initial_size)?;
            }
        }

        Ok(Self {
            base,
            size: initial_size,
            make_accessible,
            memory_image,
        })
    }
}

impl RuntimeLinearMemory for ExternalMemory {
    fn byte_size(&self) -> usize {
        self.size
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        Some(self.base.len())
    }

    fn grow_to(&mut self, new_byte_size: usize) -> Result<()> {
        // Never exceed the static memory size; this check should have been made
        // prior to arriving here.
        assert!(new_byte_size <= self.base.len());

        // Actually grow the memory.
        if let Some(image) = &mut self.memory_image {
            image.set_heap_limit(new_byte_size)?;
        } else {
            let make_accessible = self
                .make_accessible
                .expect("make_accessible must be Some if this is not a CoW memory");

            // Operating system can fail to make memory accessible.
            let old_byte_size = self.byte_size();
            make_accessible(
                unsafe { self.base.as_mut_ptr().add(old_byte_size) },
                new_byte_size - old_byte_size,
            )?;
        }

        // Update our accounting of the available size.
        self.size = new_byte_size;
        Ok(())
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        VMMemoryDefinition {
            base: self.base.as_mut_ptr().cast(),
            current_length: self.size,
        }
    }

    fn needs_init(&self) -> bool {
        if let Some(slot) = &self.memory_image {
            !slot.has_image()
        } else {
            true
        }
    }

    #[cfg(feature = "pooling-allocator")]
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }
}

/// Representation of a runtime wasm linear memory.
pub struct Memory(Box<dyn RuntimeLinearMemory>);

impl Memory {
    /// Create a new dynamic (movable) memory instance for the specified plan.
    pub fn new_dynamic(
        plan: &MemoryPlan,
        creator: &dyn RuntimeMemoryCreator,
        store: &mut dyn Store,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        let (minimum, maximum) = Self::limit_new(plan, store)?;
        Ok(Memory(creator.new_memory(
            plan,
            minimum,
            maximum,
            memory_image,
        )?))
    }

    /// Create a new static (immovable) memory instance for the specified plan.
    pub fn new_static(
        plan: &MemoryPlan,
        base: &'static mut [u8],
        make_accessible: Option<fn(*mut u8, usize) -> Result<()>>,
        memory_image: Option<MemoryImageSlot>,
        store: &mut dyn Store,
    ) -> Result<Self> {
        let (minimum, maximum) = Self::limit_new(plan, store)?;
        let pooled_memory =
            ExternalMemory::new(base, minimum, maximum, make_accessible, memory_image)?;
        Ok(Memory(Box::new(pooled_memory)))
    }

    /// Calls the `store`'s limiter to optionally prevent a memory from being allocated.
    ///
    /// Returns the minimum size and optional maximum size of the memory, in
    /// bytes.
    fn limit_new(plan: &MemoryPlan, store: &mut dyn Store) -> Result<(usize, Option<usize>)> {
        // Sanity-check what should already be true from wasm module validation.
        let absolute_max = if plan.memory.memory64 {
            WASM64_MAX_PAGES
        } else {
            WASM32_MAX_PAGES
        };
        assert_le!(plan.memory.minimum, absolute_max);
        assert!(plan.memory.maximum.is_none() || plan.memory.maximum.unwrap() <= absolute_max);

        // This is the absolute possible maximum that the module can try to
        // allocate, which is our entire address space minus a wasm page. That
        // shouldn't ever actually work in terms of an allocation because
        // presumably the kernel wants *something* for itself, but this is used
        // to pass to the `store`'s limiter for a requested size
        // to approximate the scale of the request that the wasm module is
        // making. This is necessary because the limiter works on `usize` bytes
        // whereas we're working with possibly-overflowing `u64` calculations
        // here. To actually faithfully represent the byte requests of modules
        // we'd have to represent things as `u128`, but that's kinda
        // overkill for this purpose.
        let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);

        // If the minimum memory size overflows the size of our own address
        // space, then we can't satisfy this request, but defer the error to
        // later so the `store` can be informed that an effective oom is
        // happening.
        let minimum = plan
            .memory
            .minimum
            .checked_mul(WASM_PAGE_SIZE_U64)
            .and_then(|m| usize::try_from(m).ok());

        // The plan stores the maximum size in units of wasm pages, but we
        // use units of bytes. Unlike for the `minimum` size we silently clamp
        // the effective maximum size to `absolute_max` above if the maximum is
        // too large. This should be ok since as a wasm runtime we get to
        // arbitrarily decide the actual maximum size of memory, regardless of
        // what's actually listed on the memory itself.
        let mut maximum = plan.memory.maximum.map(|max| {
            usize::try_from(max)
                .ok()
                .and_then(|m| m.checked_mul(WASM_PAGE_SIZE))
                .unwrap_or(absolute_max)
        });

        // If this is a 32-bit memory and no maximum is otherwise listed then we
        // need to still specify a maximum size of 4GB. If the host platform is
        // 32-bit then there's no need to limit the maximum this way since no
        // allocation of 4GB can succeed, but for 64-bit platforms this is
        // required to limit memories to 4GB.
        if !plan.memory.memory64 && maximum.is_none() {
            maximum = usize::try_from(1u64 << 32).ok();
        }

        // Inform the store's limiter what's about to happen. This will let the limiter
        // reject anything if necessary, and this also guarantees that we should
        // call the limiter for all requested memories, even if our `minimum`
        // calculation overflowed. This means that the `minimum` we're informing
        // the limiter is lossy and may not be 100% accurate, but for now the
        // expected uses of limiter means that's ok.
        if !store.memory_growing(0, minimum.unwrap_or(absolute_max), maximum)? {
            bail!(
                "memory minimum size of {} pages exceeds memory limits",
                plan.memory.minimum
            );
        }

        // At this point we need to actually handle overflows, so bail out with
        // an error if we made it this far.
        let minimum = minimum.ok_or_else(|| {
            format_err!(
                "memory minimum size of {} pages exceeds memory limits",
                plan.memory.minimum
            )
        })?;
        Ok((minimum, maximum))
    }

    /// Returns the number of allocated wasm pages.
    pub fn byte_size(&self) -> usize {
        self.0.byte_size()
    }

    /// Returns the maximum number of pages the memory can grow to at runtime.
    ///
    /// Returns `None` if the memory is unbounded.
    ///
    /// The runtime maximum may not be equal to the maximum from the linear memory's
    /// Wasm type when it is being constrained by an instance allocator.
    pub fn maximum_byte_size(&self) -> Option<usize> {
        self.0.maximum_byte_size()
    }

    /// Returns whether or not this memory needs initialization. It
    /// may not if it already has initial content thanks to a CoW
    /// mechanism.
    pub(crate) fn needs_init(&self) -> bool {
        self.0.needs_init()
    }

    /// Grow memory by the specified amount of wasm pages.
    ///
    /// Returns `None` if memory can't be grown by the specified amount
    /// of wasm pages. Returns `Some` with the old size of memory, in bytes, on
    /// successful growth.
    ///
    /// # Safety
    ///
    /// Resizing the memory can reallocate the memory buffer for dynamic memories.
    /// An instance's `VMContext` may have pointers to the memory's base and will
    /// need to be fixed up after growing the memory.
    ///
    /// Generally, prefer using `InstanceHandle::memory_grow`, which encapsulates
    /// this unsafety.
    ///
    /// Ensure that the provided Store is not used to get access any Memory
    /// which lives inside it.
    pub unsafe fn grow(
        &mut self,
        delta_pages: u64,
        store: &mut dyn Store,
    ) -> Result<Option<usize>, Error> {
        let old_byte_size = self.byte_size();

        // Wasm spec: when growing by 0 pages, always return the current size.
        if delta_pages == 0 {
            return Ok(Some(old_byte_size));
        }

        // largest wasm-page-aligned region of memory it is possible to
        // represent in a usize. This will be impossible for the system to
        // actually allocate.
        let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);
        // calculate byte size of the new allocation. Let it overflow up to
        // usize::MAX, then clamp it down to absolute_max.
        let new_byte_size = usize::try_from(delta_pages)
            .unwrap_or(usize::MAX)
            .saturating_mul(WASM_PAGE_SIZE)
            .saturating_add(old_byte_size);
        let new_byte_size = if new_byte_size > absolute_max {
            absolute_max
        } else {
            new_byte_size
        };

        let maximum = self.maximum_byte_size();
        // Store limiter gets first chance to reject memory_growing.
        if !store.memory_growing(old_byte_size, new_byte_size, maximum)? {
            return Ok(None);
        }

        // Never exceed maximum, even if limiter permitted it.
        if let Some(max) = maximum {
            if new_byte_size > max {
                store.memory_grow_failed(&format_err!("Memory maximum size exceeded"));
                return Ok(None);
            }
        }

        match self.0.grow_to(new_byte_size) {
            Ok(_) => Ok(Some(old_byte_size)),
            Err(e) => {
                store.memory_grow_failed(&e);
                Ok(None)
            }
        }
    }

    /// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm code.
    pub fn vmmemory(&mut self) -> VMMemoryDefinition {
        self.0.vmmemory()
    }

    /// Check if the inner implementation of [`Memory`] is a memory created with
    /// [`Memory::new_static()`].
    #[cfg(feature = "pooling-allocator")]
    pub fn is_static(&mut self) -> bool {
        let as_any = self.0.as_any_mut();
        as_any.downcast_ref::<ExternalMemory>().is_some()
    }

    /// Consume the memory, returning its [`MemoryImageSlot`] if any is present.
    /// The image should only be present for a subset of memories created with
    /// [`Memory::new_static()`].
    #[cfg(feature = "pooling-allocator")]
    pub fn unwrap_static_image(mut self) -> Option<MemoryImageSlot> {
        let as_any = self.0.as_any_mut();
        if let Some(m) = as_any.downcast_mut::<ExternalMemory>() {
            std::mem::take(&mut m.memory_image)
        } else {
            None
        }
    }
}