1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
// Copyright 2020-2021 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Cross-Consensus Message format data structures.

use super::Junction;
use core::{mem, result};
use parity_scale_codec::{self, Decode, Encode};

/// A relative path between state-bearing consensus systems.
///
/// A location in a consensus system is defined as an *isolatable state machine* held within global consensus. The
/// location in question need not have a sophisticated consensus algorithm of its own; a single account within
/// Ethereum, for example, could be considered a location.
///
/// A very-much non-exhaustive list of types of location include:
/// - A (normal, layer-1) block chain, e.g. the Bitcoin mainnet or a parachain.
/// - A layer-0 super-chain, e.g. the Polkadot Relay chain.
/// - A layer-2 smart contract, e.g. an ERC-20 on Ethereum.
/// - A logical functional component of a chain, e.g. a single instance of a pallet on a Frame-based Substrate chain.
/// - An account.
///
/// A `MultiLocation` is a *relative identifier*, meaning that it can only be used to define the relative path
/// between two locations, and cannot generally be used to refer to a location universally. It is comprised of a
/// number of *junctions*, each morphing the previous location, either diving down into one of its internal locations,
/// called a *sub-consensus*, or going up into its parent location. Correct `MultiLocation` values must have all
/// `Parent` junctions as a prefix to all *sub-consensus* junctions.
///
/// This specific `MultiLocation` implementation uses a Rust `enum` in order to make pattern matching easier.
///
/// The `MultiLocation` value of `Null` simply refers to the interpreting consensus system.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode, Debug, scale_info::TypeInfo)]
pub enum MultiLocation {
	/// The interpreting consensus system.
	Null,
	/// A relative path comprising 1 junction.
	X1(Junction),
	/// A relative path comprising 2 junctions.
	X2(Junction, Junction),
	/// A relative path comprising 3 junctions.
	X3(Junction, Junction, Junction),
	/// A relative path comprising 4 junctions.
	X4(Junction, Junction, Junction, Junction),
	/// A relative path comprising 5 junctions.
	X5(Junction, Junction, Junction, Junction, Junction),
	/// A relative path comprising 6 junctions.
	X6(Junction, Junction, Junction, Junction, Junction, Junction),
	/// A relative path comprising 7 junctions.
	X7(Junction, Junction, Junction, Junction, Junction, Junction, Junction),
	/// A relative path comprising 8 junctions.
	X8(Junction, Junction, Junction, Junction, Junction, Junction, Junction, Junction),
}

/// Maximum number of junctions a `MultiLocation` can contain.
pub const MAX_MULTILOCATION_LENGTH: usize = 8;

xcm_procedural::impl_conversion_functions_for_multilocation_v0!();

pub struct MultiLocationIterator(MultiLocation);
impl Iterator for MultiLocationIterator {
	type Item = Junction;
	fn next(&mut self) -> Option<Junction> {
		self.0.take_first()
	}
}

pub struct MultiLocationReverseIterator(MultiLocation);
impl Iterator for MultiLocationReverseIterator {
	type Item = Junction;
	fn next(&mut self) -> Option<Junction> {
		self.0.take_last()
	}
}

pub struct MultiLocationRefIterator<'a>(&'a MultiLocation, usize);
impl<'a> Iterator for MultiLocationRefIterator<'a> {
	type Item = &'a Junction;
	fn next(&mut self) -> Option<&'a Junction> {
		let result = self.0.at(self.1);
		self.1 += 1;
		result
	}
}

pub struct MultiLocationReverseRefIterator<'a>(&'a MultiLocation, usize);
impl<'a> Iterator for MultiLocationReverseRefIterator<'a> {
	type Item = &'a Junction;
	fn next(&mut self) -> Option<&'a Junction> {
		self.1 += 1;
		self.0.at(self.0.len().checked_sub(self.1)?)
	}
}

impl MultiLocation {
	/// Returns first junction, or `None` if the location is empty.
	pub fn first(&self) -> Option<&Junction> {
		match &self {
			MultiLocation::Null => None,
			MultiLocation::X1(ref a) => Some(a),
			MultiLocation::X2(ref a, ..) => Some(a),
			MultiLocation::X3(ref a, ..) => Some(a),
			MultiLocation::X4(ref a, ..) => Some(a),
			MultiLocation::X5(ref a, ..) => Some(a),
			MultiLocation::X6(ref a, ..) => Some(a),
			MultiLocation::X7(ref a, ..) => Some(a),
			MultiLocation::X8(ref a, ..) => Some(a),
		}
	}

	/// Returns last junction, or `None` if the location is empty.
	pub fn last(&self) -> Option<&Junction> {
		match &self {
			MultiLocation::Null => None,
			MultiLocation::X1(ref a) => Some(a),
			MultiLocation::X2(.., ref a) => Some(a),
			MultiLocation::X3(.., ref a) => Some(a),
			MultiLocation::X4(.., ref a) => Some(a),
			MultiLocation::X5(.., ref a) => Some(a),
			MultiLocation::X6(.., ref a) => Some(a),
			MultiLocation::X7(.., ref a) => Some(a),
			MultiLocation::X8(.., ref a) => Some(a),
		}
	}

	/// Splits off the first junction, returning the remaining suffix (first item in tuple) and the first element
	/// (second item in tuple) or `None` if it was empty.
	pub fn split_first(self) -> (MultiLocation, Option<Junction>) {
		match self {
			MultiLocation::Null => (MultiLocation::Null, None),
			MultiLocation::X1(a) => (MultiLocation::Null, Some(a)),
			MultiLocation::X2(a, b) => (MultiLocation::X1(b), Some(a)),
			MultiLocation::X3(a, b, c) => (MultiLocation::X2(b, c), Some(a)),
			MultiLocation::X4(a, b, c, d) => (MultiLocation::X3(b, c, d), Some(a)),
			MultiLocation::X5(a, b, c, d, e) => (MultiLocation::X4(b, c, d, e), Some(a)),
			MultiLocation::X6(a, b, c, d, e, f) => (MultiLocation::X5(b, c, d, e, f), Some(a)),
			MultiLocation::X7(a, b, c, d, e, f, g) =>
				(MultiLocation::X6(b, c, d, e, f, g), Some(a)),
			MultiLocation::X8(a, b, c, d, e, f, g, h) =>
				(MultiLocation::X7(b, c, d, e, f, g, h), Some(a)),
		}
	}

	/// Splits off the last junction, returning the remaining prefix (first item in tuple) and the last element
	/// (second item in tuple) or `None` if it was empty.
	pub fn split_last(self) -> (MultiLocation, Option<Junction>) {
		match self {
			MultiLocation::Null => (MultiLocation::Null, None),
			MultiLocation::X1(a) => (MultiLocation::Null, Some(a)),
			MultiLocation::X2(a, b) => (MultiLocation::X1(a), Some(b)),
			MultiLocation::X3(a, b, c) => (MultiLocation::X2(a, b), Some(c)),
			MultiLocation::X4(a, b, c, d) => (MultiLocation::X3(a, b, c), Some(d)),
			MultiLocation::X5(a, b, c, d, e) => (MultiLocation::X4(a, b, c, d), Some(e)),
			MultiLocation::X6(a, b, c, d, e, f) => (MultiLocation::X5(a, b, c, d, e), Some(f)),
			MultiLocation::X7(a, b, c, d, e, f, g) =>
				(MultiLocation::X6(a, b, c, d, e, f), Some(g)),
			MultiLocation::X8(a, b, c, d, e, f, g, h) =>
				(MultiLocation::X7(a, b, c, d, e, f, g), Some(h)),
		}
	}

	/// Removes the first element from `self`, returning it (or `None` if it was empty).
	pub fn take_first(&mut self) -> Option<Junction> {
		let mut d = MultiLocation::Null;
		mem::swap(&mut *self, &mut d);
		let (tail, head) = d.split_first();
		*self = tail;
		head
	}

	/// Removes the last element from `self`, returning it (or `None` if it was empty).
	pub fn take_last(&mut self) -> Option<Junction> {
		let mut d = MultiLocation::Null;
		mem::swap(&mut *self, &mut d);
		let (head, tail) = d.split_last();
		*self = head;
		tail
	}

	/// Consumes `self` and returns a `MultiLocation` suffixed with `new`, or an `Err` with the original value of
	/// `self` in case of overflow.
	pub fn pushed_with(self, new: Junction) -> result::Result<Self, Self> {
		Ok(match self {
			MultiLocation::Null => MultiLocation::X1(new),
			MultiLocation::X1(a) => MultiLocation::X2(a, new),
			MultiLocation::X2(a, b) => MultiLocation::X3(a, b, new),
			MultiLocation::X3(a, b, c) => MultiLocation::X4(a, b, c, new),
			MultiLocation::X4(a, b, c, d) => MultiLocation::X5(a, b, c, d, new),
			MultiLocation::X5(a, b, c, d, e) => MultiLocation::X6(a, b, c, d, e, new),
			MultiLocation::X6(a, b, c, d, e, f) => MultiLocation::X7(a, b, c, d, e, f, new),
			MultiLocation::X7(a, b, c, d, e, f, g) => MultiLocation::X8(a, b, c, d, e, f, g, new),
			s => Err(s)?,
		})
	}

	/// Consumes `self` and returns a `MultiLocation` prefixed with `new`, or an `Err` with the original value of
	/// `self` in case of overflow.
	pub fn pushed_front_with(self, new: Junction) -> result::Result<Self, Self> {
		Ok(match self {
			MultiLocation::Null => MultiLocation::X1(new),
			MultiLocation::X1(a) => MultiLocation::X2(new, a),
			MultiLocation::X2(a, b) => MultiLocation::X3(new, a, b),
			MultiLocation::X3(a, b, c) => MultiLocation::X4(new, a, b, c),
			MultiLocation::X4(a, b, c, d) => MultiLocation::X5(new, a, b, c, d),
			MultiLocation::X5(a, b, c, d, e) => MultiLocation::X6(new, a, b, c, d, e),
			MultiLocation::X6(a, b, c, d, e, f) => MultiLocation::X7(new, a, b, c, d, e, f),
			MultiLocation::X7(a, b, c, d, e, f, g) => MultiLocation::X8(new, a, b, c, d, e, f, g),
			s => Err(s)?,
		})
	}

	/// Returns the number of junctions in `self`.
	pub fn len(&self) -> usize {
		match &self {
			MultiLocation::Null => 0,
			MultiLocation::X1(..) => 1,
			MultiLocation::X2(..) => 2,
			MultiLocation::X3(..) => 3,
			MultiLocation::X4(..) => 4,
			MultiLocation::X5(..) => 5,
			MultiLocation::X6(..) => 6,
			MultiLocation::X7(..) => 7,
			MultiLocation::X8(..) => 8,
		}
	}

	/// Returns the junction at index `i`, or `None` if the location doesn't contain that many elements.
	pub fn at(&self, i: usize) -> Option<&Junction> {
		Some(match (i, &self) {
			(0, MultiLocation::X1(ref a)) => a,
			(0, MultiLocation::X2(ref a, ..)) => a,
			(0, MultiLocation::X3(ref a, ..)) => a,
			(0, MultiLocation::X4(ref a, ..)) => a,
			(0, MultiLocation::X5(ref a, ..)) => a,
			(0, MultiLocation::X6(ref a, ..)) => a,
			(0, MultiLocation::X7(ref a, ..)) => a,
			(0, MultiLocation::X8(ref a, ..)) => a,
			(1, MultiLocation::X2(_, ref a)) => a,
			(1, MultiLocation::X3(_, ref a, ..)) => a,
			(1, MultiLocation::X4(_, ref a, ..)) => a,
			(1, MultiLocation::X5(_, ref a, ..)) => a,
			(1, MultiLocation::X6(_, ref a, ..)) => a,
			(1, MultiLocation::X7(_, ref a, ..)) => a,
			(1, MultiLocation::X8(_, ref a, ..)) => a,
			(2, MultiLocation::X3(_, _, ref a)) => a,
			(2, MultiLocation::X4(_, _, ref a, ..)) => a,
			(2, MultiLocation::X5(_, _, ref a, ..)) => a,
			(2, MultiLocation::X6(_, _, ref a, ..)) => a,
			(2, MultiLocation::X7(_, _, ref a, ..)) => a,
			(2, MultiLocation::X8(_, _, ref a, ..)) => a,
			(3, MultiLocation::X4(_, _, _, ref a)) => a,
			(3, MultiLocation::X5(_, _, _, ref a, ..)) => a,
			(3, MultiLocation::X6(_, _, _, ref a, ..)) => a,
			(3, MultiLocation::X7(_, _, _, ref a, ..)) => a,
			(3, MultiLocation::X8(_, _, _, ref a, ..)) => a,
			(4, MultiLocation::X5(_, _, _, _, ref a)) => a,
			(4, MultiLocation::X6(_, _, _, _, ref a, ..)) => a,
			(4, MultiLocation::X7(_, _, _, _, ref a, ..)) => a,
			(4, MultiLocation::X8(_, _, _, _, ref a, ..)) => a,
			(5, MultiLocation::X6(_, _, _, _, _, ref a)) => a,
			(5, MultiLocation::X7(_, _, _, _, _, ref a, ..)) => a,
			(5, MultiLocation::X8(_, _, _, _, _, ref a, ..)) => a,
			(6, MultiLocation::X7(_, _, _, _, _, _, ref a)) => a,
			(6, MultiLocation::X8(_, _, _, _, _, _, ref a, ..)) => a,
			(7, MultiLocation::X8(_, _, _, _, _, _, _, ref a)) => a,
			_ => return None,
		})
	}

	/// Returns a mutable reference to the junction at index `i`, or `None` if the location doesn't contain that many
	/// elements.
	pub fn at_mut(&mut self, i: usize) -> Option<&mut Junction> {
		Some(match (i, self) {
			(0, MultiLocation::X1(ref mut a)) => a,
			(0, MultiLocation::X2(ref mut a, ..)) => a,
			(0, MultiLocation::X3(ref mut a, ..)) => a,
			(0, MultiLocation::X4(ref mut a, ..)) => a,
			(0, MultiLocation::X5(ref mut a, ..)) => a,
			(0, MultiLocation::X6(ref mut a, ..)) => a,
			(0, MultiLocation::X7(ref mut a, ..)) => a,
			(0, MultiLocation::X8(ref mut a, ..)) => a,
			(1, MultiLocation::X2(_, ref mut a)) => a,
			(1, MultiLocation::X3(_, ref mut a, ..)) => a,
			(1, MultiLocation::X4(_, ref mut a, ..)) => a,
			(1, MultiLocation::X5(_, ref mut a, ..)) => a,
			(1, MultiLocation::X6(_, ref mut a, ..)) => a,
			(1, MultiLocation::X7(_, ref mut a, ..)) => a,
			(1, MultiLocation::X8(_, ref mut a, ..)) => a,
			(2, MultiLocation::X3(_, _, ref mut a)) => a,
			(2, MultiLocation::X4(_, _, ref mut a, ..)) => a,
			(2, MultiLocation::X5(_, _, ref mut a, ..)) => a,
			(2, MultiLocation::X6(_, _, ref mut a, ..)) => a,
			(2, MultiLocation::X7(_, _, ref mut a, ..)) => a,
			(2, MultiLocation::X8(_, _, ref mut a, ..)) => a,
			(3, MultiLocation::X4(_, _, _, ref mut a)) => a,
			(3, MultiLocation::X5(_, _, _, ref mut a, ..)) => a,
			(3, MultiLocation::X6(_, _, _, ref mut a, ..)) => a,
			(3, MultiLocation::X7(_, _, _, ref mut a, ..)) => a,
			(3, MultiLocation::X8(_, _, _, ref mut a, ..)) => a,
			(4, MultiLocation::X5(_, _, _, _, ref mut a)) => a,
			(4, MultiLocation::X6(_, _, _, _, ref mut a, ..)) => a,
			(4, MultiLocation::X7(_, _, _, _, ref mut a, ..)) => a,
			(4, MultiLocation::X8(_, _, _, _, ref mut a, ..)) => a,
			(5, MultiLocation::X6(_, _, _, _, _, ref mut a)) => a,
			(5, MultiLocation::X7(_, _, _, _, _, ref mut a, ..)) => a,
			(5, MultiLocation::X8(_, _, _, _, _, ref mut a, ..)) => a,
			(6, MultiLocation::X7(_, _, _, _, _, _, ref mut a)) => a,
			(6, MultiLocation::X8(_, _, _, _, _, _, ref mut a, ..)) => a,
			(7, MultiLocation::X8(_, _, _, _, _, _, _, ref mut a)) => a,
			_ => return None,
		})
	}

	/// Returns a reference iterator over the junctions.
	pub fn iter(&self) -> MultiLocationRefIterator {
		MultiLocationRefIterator(&self, 0)
	}

	/// Returns a reference iterator over the junctions in reverse.
	pub fn iter_rev(&self) -> MultiLocationReverseRefIterator {
		MultiLocationReverseRefIterator(&self, 0)
	}

	/// Consumes `self` and returns an iterator over the junctions.
	pub fn into_iter(self) -> MultiLocationIterator {
		MultiLocationIterator(self)
	}

	/// Consumes `self` and returns an iterator over the junctions in reverse.
	pub fn into_iter_rev(self) -> MultiLocationReverseIterator {
		MultiLocationReverseIterator(self)
	}

	/// Ensures that self begins with `prefix` and that it has a single `Junction` item following.
	/// If so, returns a reference to this `Junction` item.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v0::{MultiLocation::*, Junction::*};
	/// # fn main() {
	/// let mut m = X3(Parent, PalletInstance(3), OnlyChild);
	/// assert_eq!(m.match_and_split(&X2(Parent, PalletInstance(3))), Some(&OnlyChild));
	/// assert_eq!(m.match_and_split(&X1(Parent)), None);
	/// # }
	/// ```
	pub fn match_and_split(&self, prefix: &MultiLocation) -> Option<&Junction> {
		if prefix.len() + 1 != self.len() {
			return None
		}
		for i in 0..prefix.len() {
			if prefix.at(i) != self.at(i) {
				return None
			}
		}
		return self.at(prefix.len())
	}

	/// Mutates `self`, suffixing it with `new`. Returns `Err` in case of overflow.
	pub fn push(&mut self, new: Junction) -> result::Result<(), ()> {
		let mut n = MultiLocation::Null;
		mem::swap(&mut *self, &mut n);
		match n.pushed_with(new) {
			Ok(result) => {
				*self = result;
				Ok(())
			},
			Err(old) => {
				*self = old;
				Err(())
			},
		}
	}

	/// Mutates `self`, prefixing it with `new`. Returns `Err` in case of overflow.
	pub fn push_front(&mut self, new: Junction) -> result::Result<(), ()> {
		let mut n = MultiLocation::Null;
		mem::swap(&mut *self, &mut n);
		match n.pushed_front_with(new) {
			Ok(result) => {
				*self = result;
				Ok(())
			},
			Err(old) => {
				*self = old;
				Err(())
			},
		}
	}

	/// Returns the number of `Parent` junctions at the beginning of `self`.
	pub fn leading_parent_count(&self) -> usize {
		use Junction::Parent;
		match self {
			MultiLocation::X8(Parent, Parent, Parent, Parent, Parent, Parent, Parent, Parent) => 8,

			MultiLocation::X8(Parent, Parent, Parent, Parent, Parent, Parent, Parent, ..) => 7,
			MultiLocation::X7(Parent, Parent, Parent, Parent, Parent, Parent, Parent) => 7,

			MultiLocation::X8(Parent, Parent, Parent, Parent, Parent, Parent, ..) => 6,
			MultiLocation::X7(Parent, Parent, Parent, Parent, Parent, Parent, ..) => 6,
			MultiLocation::X6(Parent, Parent, Parent, Parent, Parent, Parent) => 6,

			MultiLocation::X8(Parent, Parent, Parent, Parent, Parent, ..) => 5,
			MultiLocation::X7(Parent, Parent, Parent, Parent, Parent, ..) => 5,
			MultiLocation::X6(Parent, Parent, Parent, Parent, Parent, ..) => 5,
			MultiLocation::X5(Parent, Parent, Parent, Parent, Parent) => 5,

			MultiLocation::X8(Parent, Parent, Parent, Parent, ..) => 4,
			MultiLocation::X7(Parent, Parent, Parent, Parent, ..) => 4,
			MultiLocation::X6(Parent, Parent, Parent, Parent, ..) => 4,
			MultiLocation::X5(Parent, Parent, Parent, Parent, ..) => 4,
			MultiLocation::X4(Parent, Parent, Parent, Parent) => 4,

			MultiLocation::X8(Parent, Parent, Parent, ..) => 3,
			MultiLocation::X7(Parent, Parent, Parent, ..) => 3,
			MultiLocation::X6(Parent, Parent, Parent, ..) => 3,
			MultiLocation::X5(Parent, Parent, Parent, ..) => 3,
			MultiLocation::X4(Parent, Parent, Parent, ..) => 3,
			MultiLocation::X3(Parent, Parent, Parent) => 3,

			MultiLocation::X8(Parent, Parent, ..) => 2,
			MultiLocation::X7(Parent, Parent, ..) => 2,
			MultiLocation::X6(Parent, Parent, ..) => 2,
			MultiLocation::X5(Parent, Parent, ..) => 2,
			MultiLocation::X4(Parent, Parent, ..) => 2,
			MultiLocation::X3(Parent, Parent, ..) => 2,
			MultiLocation::X2(Parent, Parent) => 2,

			MultiLocation::X8(Parent, ..) => 1,
			MultiLocation::X7(Parent, ..) => 1,
			MultiLocation::X6(Parent, ..) => 1,
			MultiLocation::X5(Parent, ..) => 1,
			MultiLocation::X4(Parent, ..) => 1,
			MultiLocation::X3(Parent, ..) => 1,
			MultiLocation::X2(Parent, ..) => 1,
			MultiLocation::X1(Parent) => 1,
			_ => 0,
		}
	}

	/// This function ensures a multi-junction is in its canonicalized/normalized form, removing
	/// any internal `[Non-Parent, Parent]` combinations.
	pub fn canonicalize(&mut self) {
		let mut normalized = MultiLocation::Null;
		let mut iter = self.iter();
		// We build up the the new normalized path by taking items from the original multi-location.
		// When the next item we would add is `Parent`, we instead remove the last item assuming
		// it is non-parent.
		const EXPECT_MESSAGE: &'static str =
			"`self` is a well formed multi-location with N junctions; \
			this loop iterates over the junctions of `self`; \
			the loop can push to the new multi-location at most one time; \
			thus the size of the new multi-location is at most N junctions; \
			qed";
		while let Some(j) = iter.next() {
			if j == &Junction::Parent {
				match normalized.last() {
					None | Some(Junction::Parent) => {},
					Some(_) => {
						normalized.take_last();
						continue
					},
				}
			}

			normalized.push(j.clone()).expect(EXPECT_MESSAGE);
		}

		core::mem::swap(self, &mut normalized);
	}

	/// Mutate `self` so that it is suffixed with `suffix`. The correct normalized form is returned,
	/// removing any internal `[Non-Parent, Parent]`  combinations.
	///
	/// In the case of overflow, `self` is unmodified and  we return `Err` with `suffix`.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v0::{MultiLocation::*, Junction::*};
	/// # fn main() {
	/// let mut m = X3(Parent, Parachain(21), OnlyChild);
	/// assert_eq!(m.append_with(X2(Parent, PalletInstance(3))), Ok(()));
	/// assert_eq!(m, X3(Parent, Parachain(21), PalletInstance(3)));
	/// # }
	/// ```
	pub fn append_with(&mut self, suffix: MultiLocation) -> Result<(), MultiLocation> {
		let mut prefix = suffix;
		core::mem::swap(self, &mut prefix);
		match self.prepend_with(prefix) {
			Ok(()) => Ok(()),
			Err(prefix) => {
				let mut suffix = prefix;
				core::mem::swap(self, &mut suffix);
				Err(suffix)
			},
		}
	}

	/// Mutate `self` so that it is prefixed with `prefix`. The correct normalized form is returned,
	/// removing any internal [Non-Parent, `Parent`] combinations.
	///
	/// In the case of overflow, `self` is unmodified and  we return `Err` with `prefix`.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v0::{MultiLocation::*, Junction::*, NetworkId::Any};
	/// # fn main() {
	/// let mut m = X3(Parent, Parent, PalletInstance(3));
	/// assert_eq!(m.prepend_with(X3(Parent, Parachain(21), OnlyChild)), Ok(()));
	/// assert_eq!(m, X2(Parent, PalletInstance(3)));
	/// # }
	/// ```
	pub fn prepend_with(&mut self, prefix: MultiLocation) -> Result<(), MultiLocation> {
		let mut prefix = prefix;

		// This will guarantee that all `Parent` junctions in the prefix are leading, which is
		// important for calculating the `skipped` items below.
		prefix.canonicalize();

		let self_leading_parents = self.leading_parent_count();
		// These are the number of `non-parent` items in the prefix that we can
		// potentially remove if the original location leads with parents.
		let prefix_rest = prefix.len() - prefix.leading_parent_count();
		// 2 * skipped items will be removed when performing the normalization below.
		let skipped = self_leading_parents.min(prefix_rest);

		// Pre-pending this prefix would create a multi-location with too many junctions.
		if self.len() + prefix.len() - 2 * skipped > MAX_MULTILOCATION_LENGTH {
			return Err(prefix)
		}

		// Here we cancel out `[Non-Parent, Parent]` items (normalization), where
		// the non-parent item comes from the end of the prefix, and the parent item
		// comes from the front of the original location.
		//
		// We calculated already how many of these there should be above.
		for _ in 0..skipped {
			let _non_parent = prefix.take_last();
			let _parent = self.take_first();
			debug_assert!(
				_non_parent.is_some() && _non_parent != Some(Junction::Parent),
				"prepend_with should always remove a non-parent from the end of the prefix",
			);
			debug_assert!(
				_parent == Some(Junction::Parent),
				"prepend_with should always remove a parent from the front of the location",
			);
		}

		for j in prefix.into_iter_rev() {
			self.push_front(j)
				.expect("len + prefix minus 2*skipped is less than max length; qed");
		}
		Ok(())
	}

	/// Returns true iff `self` is an interior location. For this it may not contain any `Junction`s
	/// for which `Junction::is_interior` returns `false`. This is generally true, except for the
	/// `Parent` item.
	///
	/// # Example
	/// ```rust
	/// # use xcm::v0::{MultiLocation::*, Junction::*, NetworkId::Any};
	/// # fn main() {
	/// let parent = X1(Parent);
	/// assert_eq!(parent.is_interior(), false);
	/// let m = X2(PalletInstance(12), AccountIndex64 { network: Any, index: 23 });
	/// assert_eq!(m.is_interior(), true);
	/// # }
	/// ```
	pub fn is_interior(&self) -> bool {
		self.iter().all(Junction::is_interior)
	}
}

#[cfg(test)]
mod tests {
	use super::MultiLocation::{self, *};
	use crate::opaque::v0::{Junction::*, NetworkId::Any};

	#[test]
	fn match_and_split_works() {
		let m = X3(Parent, Parachain(42), AccountIndex64 { network: Any, index: 23 });
		assert_eq!(m.match_and_split(&X1(Parent)), None);
		assert_eq!(
			m.match_and_split(&X2(Parent, Parachain(42))),
			Some(&AccountIndex64 { network: Any, index: 23 })
		);
		assert_eq!(m.match_and_split(&m), None);
	}

	#[test]
	fn append_with_works() {
		let acc = AccountIndex64 { network: Any, index: 23 };
		let mut m = X2(Parent, Parachain(42));
		assert_eq!(m.append_with(X2(PalletInstance(3), acc.clone())), Ok(()));
		assert_eq!(m, X4(Parent, Parachain(42), PalletInstance(3), acc.clone()));

		// cannot append to create overly long multilocation
		let acc = AccountIndex64 { network: Any, index: 23 };
		let mut m = X7(Parent, Parent, Parent, Parent, Parent, Parent, Parachain(42));
		let suffix = X2(PalletInstance(3), acc.clone());
		assert_eq!(m.append_with(suffix.clone()), Err(suffix));
	}

	#[test]
	fn prepend_with_works() {
		let mut m = X3(Parent, Parachain(42), AccountIndex64 { network: Any, index: 23 });
		assert_eq!(m.prepend_with(X2(Parent, OnlyChild)), Ok(()));
		assert_eq!(m, X3(Parent, Parachain(42), AccountIndex64 { network: Any, index: 23 }));

		// cannot prepend to create overly long multilocation
		let mut m = X7(Parent, Parent, Parent, Parent, Parent, Parent, Parachain(42));
		let prefix = X2(Parent, Parent);
		assert_eq!(m.prepend_with(prefix.clone()), Err(prefix));

		// Can handle shared prefix and resizing correctly.
		let mut m = X1(Parent);
		let prefix = X8(
			Parachain(100),
			OnlyChild,
			OnlyChild,
			OnlyChild,
			OnlyChild,
			OnlyChild,
			OnlyChild,
			Parent,
		);
		assert_eq!(m.prepend_with(prefix.clone()), Ok(()));
		assert_eq!(m, X5(Parachain(100), OnlyChild, OnlyChild, OnlyChild, OnlyChild));

		let mut m = X1(Parent);
		let prefix = X8(Parent, Parent, Parent, Parent, Parent, Parent, Parent, Parent);
		assert_eq!(m.prepend_with(prefix.clone()), Err(prefix));

		let mut m = X1(Parent);
		let prefix = X7(Parent, Parent, Parent, Parent, Parent, Parent, Parent);
		assert_eq!(m.prepend_with(prefix.clone()), Ok(()));
		assert_eq!(m, X8(Parent, Parent, Parent, Parent, Parent, Parent, Parent, Parent));

		let mut m = X1(Parent);
		let prefix = X8(Parent, Parent, Parent, Parent, OnlyChild, Parent, Parent, Parent);
		assert_eq!(m.prepend_with(prefix.clone()), Ok(()));
		assert_eq!(m, X7(Parent, Parent, Parent, Parent, Parent, Parent, Parent));
	}

	#[test]
	fn canonicalize_works() {
		let mut m = X1(Parent);
		m.canonicalize();
		assert_eq!(m, X1(Parent));

		let mut m = X1(Parachain(1));
		m.canonicalize();
		assert_eq!(m, X1(Parachain(1)));

		let mut m = X6(Parent, Parachain(1), Parent, Parachain(2), Parent, Parachain(3));
		m.canonicalize();
		assert_eq!(m, X2(Parent, Parachain(3)));

		let mut m = X5(Parachain(1), Parent, Parachain(2), Parent, Parachain(3));
		m.canonicalize();
		assert_eq!(m, X1(Parachain(3)));

		let mut m = X6(Parachain(1), Parent, Parachain(2), Parent, Parachain(3), Parent);
		m.canonicalize();
		assert_eq!(m, Null);

		let mut m = X5(Parachain(1), Parent, Parent, Parent, Parachain(3));
		m.canonicalize();
		assert_eq!(m, X3(Parent, Parent, Parachain(3)));

		let mut m = X4(Parachain(1), Parachain(2), Parent, Parent);
		m.canonicalize();
		assert_eq!(m, Null);

		let mut m = X4(Parent, Parent, Parachain(1), Parachain(2));
		m.canonicalize();
		assert_eq!(m, X4(Parent, Parent, Parachain(1), Parachain(2)));
	}

	#[test]
	fn conversion_from_other_types_works() {
		use crate::v1::{self, Junction, Junctions};

		fn takes_multilocation<Arg: Into<MultiLocation>>(_arg: Arg) {}

		takes_multilocation(Null);
		takes_multilocation(Parent);
		takes_multilocation([Parent, Parachain(4)]);

		assert_eq!(v1::MultiLocation::here().try_into(), Ok(MultiLocation::Null));
		assert_eq!(
			v1::MultiLocation::new(1, Junctions::X1(Junction::Parachain(8))).try_into(),
			Ok(X2(Parent, Parachain(8))),
		);
		assert_eq!(
			v1::MultiLocation::new(24, Junctions::Here).try_into(),
			Err::<MultiLocation, ()>(()),
		);
	}
}