1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

use frame_support::traits::Get;
use parity_scale_codec::{Decode, Encode};
use sp_io::hashing::blake2_256;
use sp_runtime::traits::{AccountIdConversion, TrailingZeroInput};
use sp_std::{borrow::Borrow, marker::PhantomData};
use xcm::latest::{Junction::*, Junctions::*, MultiLocation, NetworkId, Parent};
use xcm_executor::traits::{Convert, InvertLocation};

pub struct Account32Hash<Network, AccountId>(PhantomData<(Network, AccountId)>);
impl<Network: Get<NetworkId>, AccountId: From<[u8; 32]> + Into<[u8; 32]> + Clone>
	Convert<MultiLocation, AccountId> for Account32Hash<Network, AccountId>
{
	fn convert_ref(location: impl Borrow<MultiLocation>) -> Result<AccountId, ()> {
		Ok(("multiloc", location.borrow()).using_encoded(blake2_256).into())
	}

	fn reverse_ref(_: impl Borrow<AccountId>) -> Result<MultiLocation, ()> {
		Err(())
	}
}

/// A [`MultiLocation`] consisting of a single `Parent` [`Junction`] will be converted to the
/// parent `AccountId`.
pub struct ParentIsPreset<AccountId>(PhantomData<AccountId>);
impl<AccountId: Decode + Eq + Clone> Convert<MultiLocation, AccountId>
	for ParentIsPreset<AccountId>
{
	fn convert_ref(location: impl Borrow<MultiLocation>) -> Result<AccountId, ()> {
		if location.borrow().contains_parents_only(1) {
			Ok(b"Parent"
				.using_encoded(|b| AccountId::decode(&mut TrailingZeroInput::new(b)))
				.expect("infinite length input; no invalid inputs for type; qed"))
		} else {
			Err(())
		}
	}

	fn reverse_ref(who: impl Borrow<AccountId>) -> Result<MultiLocation, ()> {
		let parent_account = b"Parent"
			.using_encoded(|b| AccountId::decode(&mut TrailingZeroInput::new(b)))
			.expect("infinite length input; no invalid inputs for type; qed");
		if who.borrow() == &parent_account {
			Ok(Parent.into())
		} else {
			Err(())
		}
	}
}

pub struct ChildParachainConvertsVia<ParaId, AccountId>(PhantomData<(ParaId, AccountId)>);
impl<ParaId: From<u32> + Into<u32> + AccountIdConversion<AccountId>, AccountId: Clone>
	Convert<MultiLocation, AccountId> for ChildParachainConvertsVia<ParaId, AccountId>
{
	fn convert_ref(location: impl Borrow<MultiLocation>) -> Result<AccountId, ()> {
		match location.borrow() {
			MultiLocation { parents: 0, interior: X1(Parachain(id)) } =>
				Ok(ParaId::from(*id).into_account_truncating()),
			_ => Err(()),
		}
	}

	fn reverse_ref(who: impl Borrow<AccountId>) -> Result<MultiLocation, ()> {
		if let Some(id) = ParaId::try_from_account(who.borrow()) {
			Ok(Parachain(id.into()).into())
		} else {
			Err(())
		}
	}
}

pub struct SiblingParachainConvertsVia<ParaId, AccountId>(PhantomData<(ParaId, AccountId)>);
impl<ParaId: From<u32> + Into<u32> + AccountIdConversion<AccountId>, AccountId: Clone>
	Convert<MultiLocation, AccountId> for SiblingParachainConvertsVia<ParaId, AccountId>
{
	fn convert_ref(location: impl Borrow<MultiLocation>) -> Result<AccountId, ()> {
		match location.borrow() {
			MultiLocation { parents: 1, interior: X1(Parachain(id)) } =>
				Ok(ParaId::from(*id).into_account_truncating()),
			_ => Err(()),
		}
	}

	fn reverse_ref(who: impl Borrow<AccountId>) -> Result<MultiLocation, ()> {
		if let Some(id) = ParaId::try_from_account(who.borrow()) {
			Ok(MultiLocation::new(1, X1(Parachain(id.into()))))
		} else {
			Err(())
		}
	}
}

/// Extracts the `AccountId32` from the passed `location` if the network matches.
pub struct AccountId32Aliases<Network, AccountId>(PhantomData<(Network, AccountId)>);
impl<Network: Get<NetworkId>, AccountId: From<[u8; 32]> + Into<[u8; 32]> + Clone>
	Convert<MultiLocation, AccountId> for AccountId32Aliases<Network, AccountId>
{
	fn convert(location: MultiLocation) -> Result<AccountId, MultiLocation> {
		let id = match location {
			MultiLocation {
				parents: 0,
				interior: X1(AccountId32 { id, network: NetworkId::Any }),
			} => id,
			MultiLocation { parents: 0, interior: X1(AccountId32 { id, network }) }
				if network == Network::get() =>
				id,
			_ => return Err(location),
		};
		Ok(id.into())
	}

	fn reverse(who: AccountId) -> Result<MultiLocation, AccountId> {
		Ok(AccountId32 { id: who.into(), network: Network::get() }.into())
	}
}

pub struct AccountKey20Aliases<Network, AccountId>(PhantomData<(Network, AccountId)>);
impl<Network: Get<NetworkId>, AccountId: From<[u8; 20]> + Into<[u8; 20]> + Clone>
	Convert<MultiLocation, AccountId> for AccountKey20Aliases<Network, AccountId>
{
	fn convert(location: MultiLocation) -> Result<AccountId, MultiLocation> {
		let key = match location {
			MultiLocation {
				parents: 0,
				interior: X1(AccountKey20 { key, network: NetworkId::Any }),
			} => key,
			MultiLocation { parents: 0, interior: X1(AccountKey20 { key, network }) }
				if network == Network::get() =>
				key,
			_ => return Err(location),
		};
		Ok(key.into())
	}

	fn reverse(who: AccountId) -> Result<MultiLocation, AccountId> {
		let j = AccountKey20 { key: who.into(), network: Network::get() };
		Ok(j.into())
	}
}

/// Simple location inverter; give it this location's ancestry and it'll figure out the inverted
/// location.
///
/// # Example
/// ## Network Topology
/// ```txt
///                    v Source
/// Relay -> Para 1 -> Account20
///       -> Para 2 -> Account32
///                    ^ Target
/// ```
/// ```rust
/// # use frame_support::parameter_types;
/// # use xcm::latest::{MultiLocation, Junction::*, Junctions::{self, *}, NetworkId::Any};
/// # use xcm_builder::LocationInverter;
/// # use xcm_executor::traits::InvertLocation;
/// # fn main() {
/// parameter_types!{
///     pub Ancestry: MultiLocation = X2(
///         Parachain(1),
///         AccountKey20 { network: Any, key: Default::default() },
///     ).into();
/// }
///
/// let input = MultiLocation::new(2, X2(Parachain(2), AccountId32 { network: Any, id: Default::default() }));
/// let inverted = LocationInverter::<Ancestry>::invert_location(&input);
/// assert_eq!(inverted, Ok(MultiLocation::new(
///     2,
///     X2(Parachain(1), AccountKey20 { network: Any, key: Default::default() }),
/// )));
/// # }
/// ```
pub struct LocationInverter<Ancestry>(PhantomData<Ancestry>);
impl<Ancestry: Get<MultiLocation>> InvertLocation for LocationInverter<Ancestry> {
	fn ancestry() -> MultiLocation {
		Ancestry::get()
	}
	fn invert_location(location: &MultiLocation) -> Result<MultiLocation, ()> {
		let mut ancestry = Ancestry::get();
		let mut junctions = Here;
		for _ in 0..location.parent_count() {
			junctions = junctions
				.pushed_with(ancestry.take_first_interior().unwrap_or(OnlyChild))
				.map_err(|_| ())?;
		}
		let parents = location.interior().len() as u8;
		Ok(MultiLocation::new(parents, junctions))
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	use frame_support::parameter_types;
	use xcm::latest::{Junction, NetworkId::Any};

	fn account20() -> Junction {
		AccountKey20 { network: Any, key: Default::default() }
	}

	fn account32() -> Junction {
		AccountId32 { network: Any, id: Default::default() }
	}

	// Network Topology
	//                                     v Source
	// Relay -> Para 1 -> SmartContract -> Account
	//       -> Para 2 -> Account
	//                    ^ Target
	//
	// Inputs and outputs written as file paths:
	//
	// input location (source to target): ../../../para_2/account32_default
	// ancestry (root to source): para_1/account20_default/account20_default
	// =>
	// output (target to source): ../../para_1/account20_default/account20_default
	#[test]
	fn inverter_works_in_tree() {
		parameter_types! {
			pub Ancestry: MultiLocation = X3(Parachain(1), account20(), account20()).into();
		}

		let input = MultiLocation::new(3, X2(Parachain(2), account32()));
		let inverted = LocationInverter::<Ancestry>::invert_location(&input).unwrap();
		assert_eq!(inverted, MultiLocation::new(2, X3(Parachain(1), account20(), account20())));
	}

	// Network Topology
	//                                     v Source
	// Relay -> Para 1 -> SmartContract -> Account
	//          ^ Target
	#[test]
	fn inverter_uses_ancestry_as_inverted_location() {
		parameter_types! {
			pub Ancestry: MultiLocation = X2(account20(), account20()).into();
		}

		let input = MultiLocation::grandparent();
		let inverted = LocationInverter::<Ancestry>::invert_location(&input).unwrap();
		assert_eq!(inverted, X2(account20(), account20()).into());
	}

	// Network Topology
	//                                        v Source
	// Relay -> Para 1 -> CollectivePallet -> Plurality
	//          ^ Target
	#[test]
	fn inverter_uses_only_child_on_missing_ancestry() {
		parameter_types! {
			pub Ancestry: MultiLocation = X1(PalletInstance(5)).into();
		}

		let input = MultiLocation::grandparent();
		let inverted = LocationInverter::<Ancestry>::invert_location(&input).unwrap();
		assert_eq!(inverted, X2(PalletInstance(5), OnlyChild).into());
	}

	#[test]
	fn inverter_errors_when_location_is_too_large() {
		parameter_types! {
			pub Ancestry: MultiLocation = Here.into();
		}

		let input = MultiLocation { parents: 99, interior: X1(Parachain(88)) };
		let inverted = LocationInverter::<Ancestry>::invert_location(&input);
		assert_eq!(inverted, Err(()));
	}
}