1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

use sp_runtime::{traits::Saturating, RuntimeDebug};
use sp_std::{
	collections::{btree_map::BTreeMap, btree_set::BTreeSet},
	mem,
	prelude::*,
};
use xcm::latest::{
	AssetId, AssetInstance,
	Fungibility::{Fungible, NonFungible},
	MultiAsset, MultiAssetFilter, MultiAssets, MultiLocation,
	WildFungibility::{Fungible as WildFungible, NonFungible as WildNonFungible},
	WildMultiAsset::{All, AllOf},
};

/// List of non-wildcard fungible and non-fungible assets.
#[derive(Default, Clone, RuntimeDebug, Eq, PartialEq)]
pub struct Assets {
	/// The fungible assets.
	pub fungible: BTreeMap<AssetId, u128>,

	/// The non-fungible assets.
	// TODO: Consider BTreeMap<AssetId, BTreeSet<AssetInstance>>
	//   or even BTreeMap<AssetId, SortedVec<AssetInstance>>
	pub non_fungible: BTreeSet<(AssetId, AssetInstance)>,
}

impl From<MultiAsset> for Assets {
	fn from(asset: MultiAsset) -> Assets {
		let mut result = Self::default();
		result.subsume(asset);
		result
	}
}

impl From<Vec<MultiAsset>> for Assets {
	fn from(assets: Vec<MultiAsset>) -> Assets {
		let mut result = Self::default();
		for asset in assets.into_iter() {
			result.subsume(asset)
		}
		result
	}
}

impl From<MultiAssets> for Assets {
	fn from(assets: MultiAssets) -> Assets {
		assets.drain().into()
	}
}

impl From<Assets> for Vec<MultiAsset> {
	fn from(a: Assets) -> Self {
		a.into_assets_iter().collect()
	}
}

impl From<Assets> for MultiAssets {
	fn from(a: Assets) -> Self {
		a.into_assets_iter().collect::<Vec<MultiAsset>>().into()
	}
}

/// An error emitted by `take` operations.
#[derive(Debug)]
pub enum TakeError {
	/// There was an attempt to take an asset without saturating (enough of) which did not exist.
	AssetUnderflow(MultiAsset),
}

impl Assets {
	/// New value, containing no assets.
	pub fn new() -> Self {
		Self::default()
	}

	/// Total number of distinct assets.
	pub fn len(&self) -> usize {
		self.fungible.len() + self.non_fungible.len()
	}

	/// Returns `true` if `self` contains no assets.
	pub fn is_empty(&self) -> bool {
		self.fungible.is_empty() && self.non_fungible.is_empty()
	}

	/// A borrowing iterator over the fungible assets.
	pub fn fungible_assets_iter<'a>(&'a self) -> impl Iterator<Item = MultiAsset> + 'a {
		self.fungible
			.iter()
			.map(|(id, &amount)| MultiAsset { fun: Fungible(amount), id: id.clone() })
	}

	/// A borrowing iterator over the non-fungible assets.
	pub fn non_fungible_assets_iter<'a>(&'a self) -> impl Iterator<Item = MultiAsset> + 'a {
		self.non_fungible
			.iter()
			.map(|(id, instance)| MultiAsset { fun: NonFungible(instance.clone()), id: id.clone() })
	}

	/// A consuming iterator over all assets.
	pub fn into_assets_iter(self) -> impl Iterator<Item = MultiAsset> {
		self.fungible
			.into_iter()
			.map(|(id, amount)| MultiAsset { fun: Fungible(amount), id })
			.chain(
				self.non_fungible
					.into_iter()
					.map(|(id, instance)| MultiAsset { fun: NonFungible(instance), id }),
			)
	}

	/// A borrowing iterator over all assets.
	pub fn assets_iter<'a>(&'a self) -> impl Iterator<Item = MultiAsset> + 'a {
		self.fungible_assets_iter().chain(self.non_fungible_assets_iter())
	}

	/// Mutate `self` to contain all given `assets`, saturating if necessary.
	///
	/// NOTE: [`Assets`] are always sorted, allowing us to optimize this function from `O(n^2)` to `O(n)`.
	pub fn subsume_assets(&mut self, mut assets: Assets) {
		let mut f_iter = assets.fungible.iter_mut();
		let mut g_iter = self.fungible.iter_mut();
		if let (Some(mut f), Some(mut g)) = (f_iter.next(), g_iter.next()) {
			loop {
				if f.0 == g.0 {
					// keys are equal. in this case, we add `self`'s balance for the asset onto `assets`, balance, knowing
					// that the `append` operation which follows will clobber `self`'s value and only use `assets`'s.
					(*f.1).saturating_accrue(*g.1);
				}
				if f.0 <= g.0 {
					f = match f_iter.next() {
						Some(x) => x,
						None => break,
					};
				}
				if f.0 >= g.0 {
					g = match g_iter.next() {
						Some(x) => x,
						None => break,
					};
				}
			}
		}
		self.fungible.append(&mut assets.fungible);
		self.non_fungible.append(&mut assets.non_fungible);
	}

	/// Mutate `self` to contain the given `asset`, saturating if necessary.
	///
	/// Wildcard values of `asset` do nothing.
	pub fn subsume(&mut self, asset: MultiAsset) {
		match asset.fun {
			Fungible(amount) => {
				self.fungible
					.entry(asset.id)
					.and_modify(|e| *e = e.saturating_add(amount))
					.or_insert(amount);
			},
			NonFungible(instance) => {
				self.non_fungible.insert((asset.id, instance));
			},
		}
	}

	/// Swaps two mutable Assets, without deinitializing either one.
	pub fn swapped(&mut self, mut with: Assets) -> Self {
		mem::swap(&mut *self, &mut with);
		with
	}

	/// Alter any concretely identified assets by prepending the given `MultiLocation`.
	///
	/// WARNING: For now we consider this infallible and swallow any errors. It is thus the caller's responsibility to
	/// ensure that any internal asset IDs are able to be prepended without overflow.
	pub fn prepend_location(&mut self, prepend: &MultiLocation) {
		let mut fungible = Default::default();
		mem::swap(&mut self.fungible, &mut fungible);
		self.fungible = fungible
			.into_iter()
			.map(|(mut id, amount)| {
				let _ = id.prepend_with(prepend);
				(id, amount)
			})
			.collect();
		let mut non_fungible = Default::default();
		mem::swap(&mut self.non_fungible, &mut non_fungible);
		self.non_fungible = non_fungible
			.into_iter()
			.map(|(mut class, inst)| {
				let _ = class.prepend_with(prepend);
				(class, inst)
			})
			.collect();
	}

	/// Mutate the assets to be interpreted as the same assets from the perspective of a `target`
	/// chain. The local chain's `ancestry` is provided.
	///
	/// Any assets which were unable to be reanchored are introduced into `failed_bin`.
	pub fn reanchor(
		&mut self,
		target: &MultiLocation,
		ancestry: &MultiLocation,
		mut maybe_failed_bin: Option<&mut Self>,
	) {
		let mut fungible = Default::default();
		mem::swap(&mut self.fungible, &mut fungible);
		self.fungible = fungible
			.into_iter()
			.filter_map(|(mut id, amount)| match id.reanchor(target, ancestry) {
				Ok(()) => Some((id, amount)),
				Err(()) => {
					maybe_failed_bin.as_mut().map(|f| f.fungible.insert(id, amount));
					None
				},
			})
			.collect();
		let mut non_fungible = Default::default();
		mem::swap(&mut self.non_fungible, &mut non_fungible);
		self.non_fungible = non_fungible
			.into_iter()
			.filter_map(|(mut class, inst)| match class.reanchor(target, ancestry) {
				Ok(()) => Some((class, inst)),
				Err(()) => {
					maybe_failed_bin.as_mut().map(|f| f.non_fungible.insert((class, inst)));
					None
				},
			})
			.collect();
	}

	/// Returns an error unless all `assets` are contained in `self`. In the case of an error, the first asset in
	/// `assets` which is not wholly in `self` is returned.
	pub fn ensure_contains(&self, assets: &MultiAssets) -> Result<(), TakeError> {
		for asset in assets.inner().iter() {
			match asset {
				MultiAsset { fun: Fungible(ref amount), ref id } => {
					if self.fungible.get(id).map_or(true, |a| a < amount) {
						return Err(TakeError::AssetUnderflow((id.clone(), *amount).into()))
					}
				},
				MultiAsset { fun: NonFungible(ref instance), ref id } => {
					let id_instance = (id.clone(), instance.clone());
					if !self.non_fungible.contains(&id_instance) {
						return Err(TakeError::AssetUnderflow(id_instance.into()))
					}
				},
			}
		}
		return Ok(())
	}

	/// Mutates `self` to its original value less `mask` and returns assets that were removed.
	///
	/// If `saturate` is `true`, then `self` is considered to be masked by `mask`, thereby avoiding any attempt at
	/// reducing it by assets it does not contain. In this case, the function is infallible. If `saturate` is `false`
	/// and `mask` references a definite asset which `self` does not contain then an error is returned.
	///
	/// The number of unique assets which are removed will never be any greater than `limit`.
	///
	/// Returns `Ok` with the definite assets token from `self` and mutates `self` to its value minus
	/// `mask`. Returns `Err` in the non-saturating case where `self` did not contain (enough of) a definite asset to
	/// be removed.
	fn general_take(
		&mut self,
		mask: MultiAssetFilter,
		saturate: bool,
		limit: usize,
	) -> Result<Assets, TakeError> {
		let mut taken = Assets::new();
		match mask {
			MultiAssetFilter::Wild(All) =>
				if self.fungible.len() + self.non_fungible.len() <= limit {
					return Ok(self.swapped(Assets::new()))
				} else {
					let fungible = mem::replace(&mut self.fungible, Default::default());
					fungible.into_iter().for_each(|(c, amount)| {
						if taken.len() < limit {
							taken.fungible.insert(c, amount);
						} else {
							self.fungible.insert(c, amount);
						}
					});
					let non_fungible = mem::replace(&mut self.non_fungible, Default::default());
					non_fungible.into_iter().for_each(|(c, instance)| {
						if taken.len() < limit {
							taken.non_fungible.insert((c, instance));
						} else {
							self.non_fungible.insert((c, instance));
						}
					});
				},
			MultiAssetFilter::Wild(AllOf { fun: WildFungible, id }) => {
				if let Some((id, amount)) = self.fungible.remove_entry(&id) {
					taken.fungible.insert(id, amount);
				}
			},
			MultiAssetFilter::Wild(AllOf { fun: WildNonFungible, id }) => {
				let non_fungible = mem::replace(&mut self.non_fungible, Default::default());
				non_fungible.into_iter().for_each(|(c, instance)| {
					if c == id && taken.len() < limit {
						taken.non_fungible.insert((c, instance));
					} else {
						self.non_fungible.insert((c, instance));
					}
				});
			},
			MultiAssetFilter::Definite(assets) => {
				if !saturate {
					self.ensure_contains(&assets)?;
				}
				for asset in assets.drain().into_iter() {
					match asset {
						MultiAsset { fun: Fungible(amount), id } => {
							let (remove, amount) = match self.fungible.get_mut(&id) {
								Some(self_amount) => {
									let amount = amount.min(*self_amount);
									*self_amount -= amount;
									(*self_amount == 0, amount)
								},
								None => (false, 0),
							};
							if remove {
								self.fungible.remove(&id);
							}
							if amount > 0 {
								taken.subsume(MultiAsset::from((id, amount)).into());
							}
						},
						MultiAsset { fun: NonFungible(instance), id } => {
							let id_instance = (id, instance);
							if self.non_fungible.remove(&id_instance) {
								taken.subsume(id_instance.into())
							}
						},
					}
					if taken.len() == limit {
						break
					}
				}
			},
		}
		Ok(taken)
	}

	/// Mutates `self` to its original value less `mask` and returns `true` iff it contains at least `mask`.
	///
	/// Returns `Ok` with the non-wildcard equivalence of `mask` taken and mutates `self` to its value minus
	/// `mask` if `self` contains `asset`, and return `Err` otherwise.
	pub fn saturating_take(&mut self, asset: MultiAssetFilter) -> Assets {
		self.general_take(asset, true, usize::max_value())
			.expect("general_take never results in error when saturating")
	}

	/// Mutates `self` to its original value less `mask` and returns `true` iff it contains at least `mask`.
	///
	/// Returns `Ok` with the non-wildcard equivalence of `mask` taken and mutates `self` to its value minus
	/// `mask` if `self` contains `asset`, and return `Err` otherwise.
	pub fn limited_saturating_take(&mut self, asset: MultiAssetFilter, limit: usize) -> Assets {
		self.general_take(asset, true, limit)
			.expect("general_take never results in error when saturating")
	}

	/// Mutates `self` to its original value less `mask` and returns `true` iff it contains at least `mask`.
	///
	/// Returns `Ok` with the non-wildcard equivalence of `asset` taken and mutates `self` to its value minus
	/// `asset` if `self` contains `asset`, and return `Err` otherwise.
	pub fn try_take(&mut self, mask: MultiAssetFilter) -> Result<Assets, TakeError> {
		self.general_take(mask, false, usize::max_value())
	}

	/// Consumes `self` and returns its original value excluding `asset` iff it contains at least `asset`.
	pub fn checked_sub(mut self, asset: MultiAsset) -> Result<Assets, Assets> {
		match asset.fun {
			Fungible(amount) => {
				let remove = if let Some(balance) = self.fungible.get_mut(&asset.id) {
					if *balance >= amount {
						*balance -= amount;
						*balance == 0
					} else {
						return Err(self)
					}
				} else {
					return Err(self)
				};
				if remove {
					self.fungible.remove(&asset.id);
				}
				Ok(self)
			},
			NonFungible(instance) =>
				if self.non_fungible.remove(&(asset.id, instance)) {
					Ok(self)
				} else {
					Err(self)
				},
		}
	}

	/// Return the assets in `self`, but (asset-wise) of no greater value than `mask`.
	///
	/// Result is undefined if `mask` includes elements which match to the same asset more than once.
	///
	/// Example:
	///
	/// ```
	/// use xcm_executor::Assets;
	/// use xcm::latest::prelude::*;
	/// let assets_i_have: Assets = vec![ (Here, 100).into(), (vec![0], 100).into() ].into();
	/// let assets_they_want: MultiAssetFilter = vec![ (Here, 200).into(), (vec![0], 50).into() ].into();
	///
	/// let assets_we_can_trade: Assets = assets_i_have.min(&assets_they_want);
	/// assert_eq!(assets_we_can_trade.into_assets_iter().collect::<Vec<_>>(), vec![
	/// 	(Here, 100).into(), (vec![0], 50).into(),
	/// ]);
	/// ```
	pub fn min(&self, mask: &MultiAssetFilter) -> Assets {
		let mut masked = Assets::new();
		match mask {
			MultiAssetFilter::Wild(All) => return self.clone(),
			MultiAssetFilter::Wild(AllOf { fun: WildFungible, id }) => {
				if let Some(&amount) = self.fungible.get(&id) {
					masked.fungible.insert(id.clone(), amount);
				}
			},
			MultiAssetFilter::Wild(AllOf { fun: WildNonFungible, id }) => {
				self.non_fungible.iter().for_each(|(ref c, ref instance)| {
					if c == id {
						masked.non_fungible.insert((c.clone(), instance.clone()));
					}
				});
			},
			MultiAssetFilter::Definite(assets) =>
				for asset in assets.inner().iter() {
					match asset {
						MultiAsset { fun: Fungible(ref amount), ref id } => {
							if let Some(m) = self.fungible.get(id) {
								masked.subsume((id.clone(), Fungible(*amount.min(m))).into());
							}
						},
						MultiAsset { fun: NonFungible(ref instance), ref id } => {
							let id_instance = (id.clone(), instance.clone());
							if self.non_fungible.contains(&id_instance) {
								masked.subsume(id_instance.into());
							}
						},
					}
				},
		}
		masked
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use xcm::latest::prelude::*;
	#[allow(non_snake_case)]
	/// Abstract fungible constructor
	fn AF(id: u8, amount: u128) -> MultiAsset {
		(vec![id], amount).into()
	}
	#[allow(non_snake_case)]
	/// Abstract non-fungible constructor
	fn ANF(class: u8, instance_id: u8) -> MultiAsset {
		(vec![class], vec![instance_id]).into()
	}
	#[allow(non_snake_case)]
	/// Concrete fungible constructor
	fn CF(amount: u128) -> MultiAsset {
		(Here, amount).into()
	}
	#[allow(non_snake_case)]
	/// Concrete non-fungible constructor
	fn CNF(instance_id: u8) -> MultiAsset {
		(Here, [instance_id; 4]).into()
	}

	fn test_assets() -> Assets {
		let mut assets = Assets::new();
		assets.subsume(AF(1, 100));
		assets.subsume(ANF(2, 20));
		assets.subsume(CF(300));
		assets.subsume(CNF(40));
		assets
	}

	#[test]
	fn subsume_assets_works() {
		let t1 = test_assets();
		let mut t2 = Assets::new();
		t2.subsume(AF(1, 50));
		t2.subsume(ANF(2, 10));
		t2.subsume(CF(300));
		t2.subsume(CNF(50));
		let mut r1 = t1.clone();
		r1.subsume_assets(t2.clone());
		let mut r2 = t1.clone();
		for a in t2.assets_iter() {
			r2.subsume(a)
		}
		assert_eq!(r1, r2);
	}

	#[test]
	fn checked_sub_works() {
		let t = test_assets();
		let t = t.checked_sub(AF(1, 50)).unwrap();
		let t = t.checked_sub(AF(1, 51)).unwrap_err();
		let t = t.checked_sub(AF(1, 50)).unwrap();
		let t = t.checked_sub(AF(1, 1)).unwrap_err();
		let t = t.checked_sub(CF(150)).unwrap();
		let t = t.checked_sub(CF(151)).unwrap_err();
		let t = t.checked_sub(CF(150)).unwrap();
		let t = t.checked_sub(CF(1)).unwrap_err();
		let t = t.checked_sub(ANF(2, 21)).unwrap_err();
		let t = t.checked_sub(ANF(2, 20)).unwrap();
		let t = t.checked_sub(ANF(2, 20)).unwrap_err();
		let t = t.checked_sub(CNF(41)).unwrap_err();
		let t = t.checked_sub(CNF(40)).unwrap();
		let t = t.checked_sub(CNF(40)).unwrap_err();
		assert_eq!(t, Assets::new());
	}

	#[test]
	fn into_assets_iter_works() {
		let assets = test_assets();
		let mut iter = assets.into_assets_iter();
		// Order defined by implementation: CF, AF, CNF, ANF
		assert_eq!(Some(CF(300)), iter.next());
		assert_eq!(Some(AF(1, 100)), iter.next());
		assert_eq!(Some(CNF(40)), iter.next());
		assert_eq!(Some(ANF(2, 20)), iter.next());
		assert_eq!(None, iter.next());
	}

	#[test]
	fn assets_into_works() {
		let mut assets_vec: Vec<MultiAsset> = Vec::new();
		assets_vec.push(AF(1, 100));
		assets_vec.push(ANF(2, 20));
		assets_vec.push(CF(300));
		assets_vec.push(CNF(40));
		// Push same group of tokens again
		assets_vec.push(AF(1, 100));
		assets_vec.push(ANF(2, 20));
		assets_vec.push(CF(300));
		assets_vec.push(CNF(40));

		let assets: Assets = assets_vec.into();
		let mut iter = assets.into_assets_iter();
		// Fungibles add
		assert_eq!(Some(CF(600)), iter.next());
		assert_eq!(Some(AF(1, 200)), iter.next());
		// Non-fungibles collapse
		assert_eq!(Some(CNF(40)), iter.next());
		assert_eq!(Some(ANF(2, 20)), iter.next());
		assert_eq!(None, iter.next());
	}

	#[test]
	fn min_all_and_none_works() {
		let assets = test_assets();
		let none = MultiAssets::new().into();
		let all = All.into();

		let none_min = assets.min(&none);
		assert_eq!(None, none_min.assets_iter().next());
		let all_min = assets.min(&all);
		assert!(all_min.assets_iter().eq(assets.assets_iter()));
	}

	#[test]
	fn min_all_abstract_works() {
		let assets = test_assets();
		let fungible = Wild((vec![1], WildFungible).into());
		let non_fungible = Wild((vec![2], WildNonFungible).into());

		let fungible = assets.min(&fungible);
		let fungible = fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(fungible, vec![AF(1, 100)]);
		let non_fungible = assets.min(&non_fungible);
		let non_fungible = non_fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(non_fungible, vec![ANF(2, 20)]);
	}

	#[test]
	fn min_all_concrete_works() {
		let assets = test_assets();
		let fungible = Wild((Here, WildFungible).into());
		let non_fungible = Wild((Here, WildNonFungible).into());

		let fungible = assets.min(&fungible);
		let fungible = fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(fungible, vec![CF(300)]);
		let non_fungible = assets.min(&non_fungible);
		let non_fungible = non_fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(non_fungible, vec![CNF(40)]);
	}

	#[test]
	fn min_basic_works() {
		let assets1 = test_assets();

		let mut assets2 = Assets::new();
		// This is less than 100, so it will decrease to 50
		assets2.subsume(AF(1, 50));
		// This asset does not exist, so not included
		assets2.subsume(ANF(2, 40));
		// This is more then 300, so it should stay at 300
		assets2.subsume(CF(600));
		// This asset should be included
		assets2.subsume(CNF(40));
		let assets2: MultiAssets = assets2.into();

		let assets_min = assets1.min(&assets2.into());
		let assets_min = assets_min.into_assets_iter().collect::<Vec<_>>();
		assert_eq!(assets_min, vec![CF(300), AF(1, 50), CNF(40)]);
	}

	#[test]
	fn saturating_take_all_and_none_works() {
		let mut assets = test_assets();

		let taken_none = assets.saturating_take(vec![].into());
		assert_eq!(None, taken_none.assets_iter().next());
		let taken_all = assets.saturating_take(All.into());
		// Everything taken
		assert_eq!(None, assets.assets_iter().next());
		let all_iter = taken_all.assets_iter();
		assert!(all_iter.eq(test_assets().assets_iter()));
	}

	#[test]
	fn saturating_take_all_abstract_works() {
		let mut assets = test_assets();
		let fungible = Wild((vec![1], WildFungible).into());
		let non_fungible = Wild((vec![2], WildNonFungible).into());

		let fungible = assets.saturating_take(fungible);
		let fungible = fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(fungible, vec![AF(1, 100)]);
		let non_fungible = assets.saturating_take(non_fungible);
		let non_fungible = non_fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(non_fungible, vec![ANF(2, 20)]);
		// Assets drained of abstract
		let final_assets = assets.assets_iter().collect::<Vec<_>>();
		assert_eq!(final_assets, vec![CF(300), CNF(40)]);
	}

	#[test]
	fn saturating_take_all_concrete_works() {
		let mut assets = test_assets();
		let fungible = Wild((Here, WildFungible).into());
		let non_fungible = Wild((Here, WildNonFungible).into());

		let fungible = assets.saturating_take(fungible);
		let fungible = fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(fungible, vec![CF(300)]);
		let non_fungible = assets.saturating_take(non_fungible);
		let non_fungible = non_fungible.assets_iter().collect::<Vec<_>>();
		assert_eq!(non_fungible, vec![CNF(40)]);
		// Assets drained of concrete
		let assets = assets.assets_iter().collect::<Vec<_>>();
		assert_eq!(assets, vec![AF(1, 100), ANF(2, 20)]);
	}

	#[test]
	fn saturating_take_basic_works() {
		let mut assets1 = test_assets();

		let mut assets2 = Assets::new();
		// We should take 50
		assets2.subsume(AF(1, 50));
		// This asset should not be taken
		assets2.subsume(ANF(2, 40));
		// This is more then 300, so it takes everything
		assets2.subsume(CF(600));
		// This asset should be taken
		assets2.subsume(CNF(40));
		let assets2: MultiAssets = assets2.into();

		let taken = assets1.saturating_take(assets2.into());
		let taken = taken.into_assets_iter().collect::<Vec<_>>();
		assert_eq!(taken, vec![CF(300), AF(1, 50), CNF(40)]);

		let assets = assets1.into_assets_iter().collect::<Vec<_>>();
		assert_eq!(assets, vec![AF(1, 50), ANF(2, 20)]);
	}
}