Expand description
A crate that provides facilities for testing the approximate equality of floating-point based types, using either relative difference, or units in the last place (ULPs) comparisons.
You can also use the *_{eq, ne}!
and assert_*_{eq, ne}!
macros to test for equality using a
more positional style:
#[macro_use]
extern crate approx;
use std::f64;
abs_diff_eq!(1.0, 1.0);
abs_diff_eq!(1.0, 1.0, epsilon = f64::EPSILON);
relative_eq!(1.0, 1.0);
relative_eq!(1.0, 1.0, epsilon = f64::EPSILON);
relative_eq!(1.0, 1.0, max_relative = 1.0);
relative_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_relative = 1.0);
relative_eq!(1.0, 1.0, max_relative = 1.0, epsilon = f64::EPSILON);
ulps_eq!(1.0, 1.0);
ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON);
ulps_eq!(1.0, 1.0, max_ulps = 4);
ulps_eq!(1.0, 1.0, epsilon = f64::EPSILON, max_ulps = 4);
ulps_eq!(1.0, 1.0, max_ulps = 4, epsilon = f64::EPSILON);
Implementing approximate equality for custom types
The *Eq
traits allow approximate equalities to be implemented on types, based on the
fundamental floating point implementations.
For example, we might want to be able to do approximate assertions on a complex number type:
#[macro_use]
extern crate approx;
#[derive(Debug, PartialEq)]
struct Complex<T> {
x: T,
i: T,
}
let x = Complex { x: 1.2, i: 2.3 };
assert_relative_eq!(x, x);
assert_ulps_eq!(x, x, max_ulps = 4);
To do this we can implement AbsDiffEq
, RelativeEq
and UlpsEq
generically in terms
of a type parameter that also implements AbsDiffEq
, RelativeEq
and UlpsEq
respectively.
This means that we can make comparisons for either Complex<f32>
or Complex<f64>
:
impl<T: AbsDiffEq> AbsDiffEq for Complex<T> where
T::Epsilon: Copy,
{
type Epsilon = T::Epsilon;
fn default_epsilon() -> T::Epsilon {
T::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
T::abs_diff_eq(&self.x, &other.x, epsilon) &&
T::abs_diff_eq(&self.i, &other.i, epsilon)
}
}
impl<T: RelativeEq> RelativeEq for Complex<T> where
T::Epsilon: Copy,
{
fn default_max_relative() -> T::Epsilon {
T::default_max_relative()
}
fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
T::relative_eq(&self.x, &other.x, epsilon, max_relative) &&
T::relative_eq(&self.i, &other.i, epsilon, max_relative)
}
}
impl<T: UlpsEq> UlpsEq for Complex<T> where
T::Epsilon: Copy,
{
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
T::ulps_eq(&self.x, &other.x, epsilon, max_ulps) &&
T::ulps_eq(&self.i, &other.i, epsilon, max_ulps)
}
}
References
Floating point is hard! Thanks goes to these links for helping to make things a little easier to understand:
Macros
abs_diff_eq!
, and panics with a helpful error on failure.abs_diff_ne!
, and panics with a helpful error on failure.relative_eq!
, and panics with a helpful error on failure.relative_ne!
, and panics with a helpful error on failure.ulps_eq!
, and panics with a helpful error on failure.ulps_ne!
, and panics with a helpful error on failure.