#[repr(transparent)]pub struct BitBox<T = usize, O = Lsb0>where
T: BitStore,
O: BitOrder,{ /* private fields */ }
Expand description
Fixed-Size, Heap-Allocated, Bit Slice
BitBox
is a heap-allocated BitSlice
region. It is a distinct type because
the implementation of bit-slice pointers means that Box<BitSlice>
cannot
exist. It can be created by cloning a bit-slice into the heap, or by freezing
the allocation of a BitVec
Original
API Differences
As with BitSlice
, this takes a pair of BitOrder
and BitStore
type
parameters to govern the buffer’s memory representation. Because BitSlice
is
unsized, BitBox
has almost none of the Box
API, and is difficult to use
directly.
Behavior
BitBox
, like &BitSlice
, is an opaque pointer to a bit-addressed slice
region. Unlike &BitSlice
, it uses the allocator to guarantee that it is the
sole accessor to the referent buffer, and is able to use that uniqueness
guarantee to specialize some BitSlice
behavior to be faster or more efficient.
Safety
BitBox
is, essentially, a NonNull<BitSlice<T, O>>
pointer. The internal
value is opaque and cannot be inspected or modified by user code.
If you attempt to do so, your program becomes inconsistent. You will likely
break the allocator’s internal state and cause a crash. No guarantees of crash
or recovery are provided. Do not inspect or modify the BitBox
handle value.
Construction
The simplest way to construct a BitBox
is by using the bitbox!
macro. You
can also explicitly clone a BitSlice
with BitBox::from_bitslice
, or freeze
a BitVec
with BitVec::into_boxed_bitslice
.
Examples
use bitvec::prelude::*;
let a = BitBox::from_bitslice(bits![1, 0, 1, 1, 0]);
let b = bitbox![0, 1, 0, 0, 1];
let b_raw: *mut BitSlice = BitBox::into_raw(b);
let b_reformed = unsafe { BitBox::from_raw(b_raw) };
Implementations§
source§impl<T, O> BitBox<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitBox<T, O>where
T: BitStore,
O: BitOrder,
sourcepub unsafe fn from_raw(raw: *mut BitSlice<T, O>) -> Self
pub unsafe fn from_raw(raw: *mut BitSlice<T, O>) -> Self
Constructs a bit-box from a raw bit-slice pointer.
This converts a *mut BitSlice
pointer that had previously been
produced by either ::into_raw()
or ::leak()
and restores the
bit-box containing it.
Original
Safety
You must only call this function on pointers produced by leaking a prior
BitBox
; you may not modify the value of a pointer returned by
::into_raw()
, nor may you conjure pointer values of your own. Doing
so will corrupt the allocator state.
You must only call this function on any given leaked pointer at most once. Not calling it at all will merely render the allocated memory unreachable for the duration of the program runtime, a normal (and safe) memory leak. Calling it once restores ordinary functionality, and ensures ordinary destruction at or before program termination. However, calling it more than once on the same pointer will introduce data races, use-after-free, and/or double-free errors.
Examples
use bitvec::prelude::*;
let bb = bitbox![0; 80];
let ptr: *mut BitSlice = BitBox::into_raw(bb);
let bb = unsafe { BitBox::from_raw(ptr) };
// unsafe { BitBox::from_raw(ptr) }; // UAF crash!
sourcepub fn into_raw(this: Self) -> *mut BitSlice<T, O>
pub fn into_raw(this: Self) -> *mut BitSlice<T, O>
Consumes the bit-box, returning a raw bit-slice pointer.
Bit-slice pointers are always correctly encoded and non-null. The
referent region is dereferenceäble *as a BitSlice
for the remainder of
the program, or until it is first passed to ::from_raw()
, whichever
comes first. Once the pointer is first passed to ::from_raw()
, all
copies of that pointer become invalid to dereference.
Original
Examples
use bitvec::prelude::*;
let bb = bitbox![0; 80];
let ptr = BitBox::into_raw(bb);
let bb = unsafe { BitBox::from_raw(ptr) };
You may not deällocate pointers produced by this function through any other means.
sourcepub fn leak<'a>(this: Self) -> &'a mut BitSlice<T, O> ⓘwhere
T: 'a,
pub fn leak<'a>(this: Self) -> &'a mut BitSlice<T, O> ⓘwhere
T: 'a,
Deliberately leaks the allocated memory, returning an
&'static mut BitSlice
reference.
This differs from ::into_raw()
in that the reference is safe to use
and can be tracked by the Rust borrow-checking system. Like the
bit-slice pointer produced by ::into_raw()
, this reference can be
un-leaked by passing it into ::from_raw()
to reclaim the memory.
Original
Examples
use bitvec::prelude::*;
let bb = bitbox![0; 80];
let static_ref: &'static mut BitSlice = BitBox::leak(bb);
static_ref.set(0, true);
assert!(static_ref[0]);
let _ = unsafe {
BitBox::from_raw(static_ref)
};
source§impl<T, O> BitBox<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitBox<T, O>where
T: BitStore,
O: BitOrder,
sourcepub fn from_bitslice(slice: &BitSlice<T, O>) -> Self
pub fn from_bitslice(slice: &BitSlice<T, O>) -> Self
Copies a bit-slice region into a new bit-box allocation.
The referent memory is memcpy
d into the heap, exactly preserving the
original bit-slice’s memory layout and contents. This allows the
function to run as fast as possible, but misaligned source bit-slices
may result in decreased performance or unexpected layout behavior during
use. You can use .force_align()
to ensure that the referent
bit-slice is aligned in memory.
Notes
Bits in the allocation of the source bit-slice, but outside its own
description of that memory, have an unspecified, but initialized,
value. You may not rely on their contents in any way, and you should
call .force_align()
and/or .fill_uninitialized()
if you are
going to inspect the underlying memory of the new allocation.
Examples
use bitvec::prelude::*;
let data = 0b0101_1011u8;
let bits = data.view_bits::<Msb0>();
let bb = BitBox::from_bitslice(&bits[2 ..]);
assert_eq!(bb, bits[2 ..]);
sourcepub fn from_boxed_slice(boxed: Box<[T]>) -> Self
pub fn from_boxed_slice(boxed: Box<[T]>) -> Self
Converts a Box<[T]>
into a BitBox<T, O>
, in place.
This does not affect the referent buffer, and only transforms the handle.
Panics
This panics if the provided boxed
slice is too long to view as a
bit-slice region.
Examples
use bitvec::prelude::*;
let boxed: Box<[u8]> = Box::new([0; 40]);
let addr = boxed.as_ptr();
let bb = BitBox::<u8>::from_boxed_slice(boxed);
assert_eq!(bb, bits![0; 320]);
assert_eq!(addr, bb.as_raw_slice().as_ptr());
sourcepub fn try_from_boxed_slice(boxed: Box<[T]>) -> Result<Self, Box<[T]>>
pub fn try_from_boxed_slice(boxed: Box<[T]>) -> Result<Self, Box<[T]>>
Attempts to convert an ordinary boxed slice into a boxed bit-slice.
This does not perform a copy or reällocation; it only attempts to
transform the handle. Because Box<[T]>
can be longer than BitBox
es,
it may fail, and will return the original handle if it does.
It is unlikely that you have a single Box<[_]>
that is too large to
convert into a bit-box. You can find the length restrictions as the
bit-slice associated constants MAX_BITS
and MAX_ELTS
.
Examples
use bitvec::prelude::*;
let boxed: Box<[u8]> = Box::new([0u8; 40]);
let addr = boxed.as_ptr();
let bb = BitBox::<u8>::try_from_boxed_slice(boxed).unwrap();
assert_eq!(bb, bits![0; 320]);
assert_eq!(addr, bb.as_raw_slice().as_ptr());
sourcepub fn into_boxed_slice(self) -> Box<[T]>
pub fn into_boxed_slice(self) -> Box<[T]>
Converts the bit-box back into an ordinary boxed element slice.
This does not touch the allocator or the buffer contents; it is purely a handle transform.
Examples
use bitvec::prelude::*;
let bb = bitbox![0; 5];
let addr = bb.as_raw_slice().as_ptr();
let boxed = bb.into_boxed_slice();
assert_eq!(boxed[..], [0][..]);
assert_eq!(addr, boxed.as_ptr());
sourcepub fn into_bitvec(self) -> BitVec<T, O> ⓘ
pub fn into_bitvec(self) -> BitVec<T, O> ⓘ
Converts the bit-box into a bit-vector.
This uses the Rust allocator API, and does not guarantee whether or not a reällocation occurs internally.
The resulting bit-vector can be converted back into a bit-box via
BitBox::into_boxed_bitslice
.
Original
API Differences
The original function is implemented in an impl<T> [T]
block, despite
taking a Box<[T]>
receiver. Since BitBox
cannot be used as an
explicit receiver outside its own impl
blocks, the method is relocated
here.
Examples
use bitvec::prelude::*;
let bb = bitbox![0, 1, 0, 0, 1];
let bv = bb.into_bitvec();
assert_eq!(bv, bitvec![0, 1, 0, 0, 1]);
sourcepub fn as_bitslice(&self) -> &BitSlice<T, O> ⓘ
pub fn as_bitslice(&self) -> &BitSlice<T, O> ⓘ
Explicitly views the bit-box as a bit-slice.
sourcepub fn as_mut_bitslice(&mut self) -> &mut BitSlice<T, O> ⓘ
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<T, O> ⓘ
Explicitly views the bit-box as a mutable bit-slice.
sourcepub fn as_raw_slice(&self) -> &[T] ⓘ
pub fn as_raw_slice(&self) -> &[T] ⓘ
Views the bit-box as a slice of its underlying memory elements.
Because bit-boxes uniquely own their buffer, they can safely view the underlying buffer without dealing with contending neighbors.
sourcepub fn as_raw_mut_slice(&mut self) -> &mut [T] ⓘ
pub fn as_raw_mut_slice(&mut self) -> &mut [T] ⓘ
Views the bit-box as a mutable slice of its underlying memory elements.
Because bit-boxes uniquely own their buffer, they can safely view the underlying buffer without dealing with contending neighbors.
sourcepub fn fill_uninitialized(&mut self, value: bool)
pub fn fill_uninitialized(&mut self, value: bool)
Sets the unused bits outside the BitBox
buffer to a fixed value.
This method modifies all bits that the allocated buffer owns but which
are outside the self.as_bitslice()
view. bitvec
guarantees that all
owned bits are initialized to some value, but does not guarantee
which value. This method can be used to make all such unused bits have
a known value after the call, so that viewing the underlying memory
directly has consistent results.
Note that the crate implementation guarantees that all bits owned by its
handles are stably initialized according to the language and compiler
rules! bitvec
will never cause UB by using uninitialized memory.
Examples
use bitvec::prelude::*;
let bits = 0b1011_0101u8.view_bits::<Msb0>();
let mut bb = BitBox::from_bitslice(&bits[2 .. 6]);
assert_eq!(bb.count_ones(), 3);
// Remember, the two bits on each edge are unspecified, and cannot be
// observed! They must be masked away for the test to be meaningful.
assert_eq!(bb.as_raw_slice()[0] & 0x3C, 0b00_1101_00u8);
bb.fill_uninitialized(false);
assert_eq!(bb.as_raw_slice(), &[0b00_1101_00u8]);
bb.fill_uninitialized(true);
assert_eq!(bb.as_raw_slice(), &[0b11_1101_11u8]);
sourcepub fn force_align(&mut self)
pub fn force_align(&mut self)
Ensures that the allocated buffer has no dead bits between the start of the buffer and the start of the live bit-slice.
This is useful for ensuring a consistent memory layout in bit-boxes
created by cloning an arbitrary bit-slice into the heap. As bit-slices
can begin and end anywhere in memory, the ::from_bitslice()
function
does not attempt to normalize them and only does a fast element-wise
copy when creating the bit-box.
The value of dead bits that are in the allocation but not in the live
region are initialized, but do not have a specified value. After
calling this method, you should use .fill_uninitialized()
to set the
excess bits in the buffer to a fixed value.
Examples
use bitvec::prelude::*;
let bits = &0b10_1101_01u8.view_bits::<Msb0>()[2 .. 6];
let mut bb = BitBox::from_bitslice(bits);
// Remember, the two bits on each edge are unspecified, and cannot be
// observed! They must be masked away for the test to be meaningful.
assert_eq!(bb.as_raw_slice()[0] & 0x3C, 0b00_1101_00u8);
bb.force_align();
bb.fill_uninitialized(false);
assert_eq!(bb.as_raw_slice(), &[0b1101_0000u8]);
Methods from Deref<Target = BitSlice<T, O>>§
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
sourcepub fn first(&self) -> Option<BitRef<'_, Const, T, O>>
pub fn first(&self) -> Option<BitRef<'_, Const, T, O>>
Gets a reference to the first bit of the bit-slice, or None
if it is
empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
.
Examples
use bitvec::prelude::*;
let bits = bits![1, 0, 0];
assert_eq!(bits.first().as_deref(), Some(&true));
assert!(bits![].first().is_none());
sourcepub fn first_mut(&mut self) -> Option<BitRef<'_, Mut, T, O>>
pub fn first_mut(&mut self) -> Option<BitRef<'_, Mut, T, O>>
Gets a mutable reference to the first bit of the bit-slice, or None
if
it is empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
. This must be bound as mut
in order to write
through it.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 3];
if let Some(mut first) = bits.first_mut() {
*first = true;
}
assert_eq!(bits, bits![1, 0, 0]);
assert!(bits![mut].first_mut().is_none());
sourcepub fn split_first(&self) -> Option<(BitRef<'_, Const, T, O>, &Self)>
pub fn split_first(&self) -> Option<(BitRef<'_, Const, T, O>, &Self)>
Splits the bit-slice into a reference to its first bit, and the rest of
the bit-slice. Returns None
when empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
.
Examples
use bitvec::prelude::*;
let bits = bits![1, 0, 0];
let (first, rest) = bits.split_first().unwrap();
assert_eq!(first, &true);
assert_eq!(rest, bits![0; 2]);
sourcepub fn split_first_mut(
&mut self
) -> Option<(BitRef<'_, Mut, T::Alias, O>, &mut BitSlice<T::Alias, O>)>
pub fn split_first_mut(
&mut self
) -> Option<(BitRef<'_, Mut, T::Alias, O>, &mut BitSlice<T::Alias, O>)>
Splits the bit-slice into mutable references of its first bit, and the
rest of the bit-slice. Returns None
when empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
. This must be bound as mut
in order to write
through it.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 3];
if let Some((mut first, rest)) = bits.split_first_mut() {
*first = true;
assert_eq!(rest, bits![0; 2]);
}
assert_eq!(bits, bits![1, 0, 0]);
sourcepub fn split_last(&self) -> Option<(BitRef<'_, Const, T, O>, &Self)>
pub fn split_last(&self) -> Option<(BitRef<'_, Const, T, O>, &Self)>
Splits the bit-slice into a reference to its last bit, and the rest of
the bit-slice. Returns None
when empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 1];
let (last, rest) = bits.split_last().unwrap();
assert_eq!(last, &true);
assert_eq!(rest, bits![0; 2]);
sourcepub fn split_last_mut(
&mut self
) -> Option<(BitRef<'_, Mut, T::Alias, O>, &mut BitSlice<T::Alias, O>)>
pub fn split_last_mut(
&mut self
) -> Option<(BitRef<'_, Mut, T::Alias, O>, &mut BitSlice<T::Alias, O>)>
Splits the bit-slice into mutable references to its last bit, and the
rest of the bit-slice. Returns None
when empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
. This must be bound as mut
in order to write
through it.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 3];
if let Some((mut last, rest)) = bits.split_last_mut() {
*last = true;
assert_eq!(rest, bits![0; 2]);
}
assert_eq!(bits, bits![0, 0, 1]);
sourcepub fn last(&self) -> Option<BitRef<'_, Const, T, O>>
pub fn last(&self) -> Option<BitRef<'_, Const, T, O>>
Gets a reference to the last bit of the bit-slice, or None
if it is
empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 1];
assert_eq!(bits.last().as_deref(), Some(&true));
assert!(bits![].last().is_none());
sourcepub fn last_mut(&mut self) -> Option<BitRef<'_, Mut, T, O>>
pub fn last_mut(&mut self) -> Option<BitRef<'_, Mut, T, O>>
Gets a mutable reference to the last bit of the bit-slice, or None
if
it is empty.
Original
API Differences
bitvec
uses a custom structure for both read-only and mutable
references to bool
. This must be bound as mut
in order to write
through it.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 3];
if let Some(mut last) = bits.last_mut() {
*last = true;
}
assert_eq!(bits, bits![0, 0, 1]);
assert!(bits![mut].last_mut().is_none());
sourcepub fn get<'a, I>(&'a self, index: I) -> Option<I::Immut>where
I: BitSliceIndex<'a, T, O>,
pub fn get<'a, I>(&'a self, index: I) -> Option<I::Immut>where
I: BitSliceIndex<'a, T, O>,
Gets a reference to a single bit or a subsection of the bit-slice,
depending on the type of index
.
- If given a
usize
, this produces a reference structure to thebool
at the position. - If given any form of range, this produces a smaller bit-slice.
This returns None
if the index
departs the bounds of self
.
Original
API Differences
BitSliceIndex
uses discrete types for immutable and mutable
references, rather than a single referent type.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0];
assert_eq!(bits.get(1).as_deref(), Some(&true));
assert_eq!(bits.get(0 .. 2), Some(bits![0, 1]));
assert!(bits.get(3).is_none());
assert!(bits.get(0 .. 4).is_none());
sourcepub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::Mut>where
I: BitSliceIndex<'a, T, O>,
pub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::Mut>where
I: BitSliceIndex<'a, T, O>,
Gets a mutable reference to a single bit or a subsection of the
bit-slice, depending on the type of index
.
- If given a
usize
, this produces a reference structure to thebool
at the position. - If given any form of range, this produces a smaller bit-slice.
This returns None
if the index
departs the bounds of self
.
Original
API Differences
BitSliceIndex
uses discrete types for immutable and mutable
references, rather than a single referent type.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 3];
*bits.get_mut(0).unwrap() = true;
bits.get_mut(1 ..).unwrap().fill(true);
assert_eq!(bits, bits![1; 3]);
sourcepub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Immutwhere
I: BitSliceIndex<'a, T, O>,
pub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Immutwhere
I: BitSliceIndex<'a, T, O>,
Gets a reference to a single bit or to a subsection of the bit-slice, without bounds checking.
This has the same arguments and behavior as .get()
, except that it
does not check that index
is in bounds.
Original
Safety
You must ensure that index
is within bounds (within the range 0 .. self.len()
), or this method will introduce memory safety and/or
undefined behavior.
It is library-level undefined behavior to index beyond the length of any bit-slice, even if you know that the offset remains within an allocation as measured by Rust or LLVM.
Examples
use bitvec::prelude::*;
let data = 0b0001_0010u8;
let bits = &data.view_bits::<Lsb0>()[.. 3];
unsafe {
assert!(bits.get_unchecked(1));
assert!(bits.get_unchecked(4));
}
sourcepub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::Mutwhere
I: BitSliceIndex<'a, T, O>,
pub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::Mutwhere
I: BitSliceIndex<'a, T, O>,
Gets a mutable reference to a single bit or a subsection of the
bit-slice, depending on the type of index
.
This has the same arguments and behavior as .get_mut()
, except that
it does not check that index
is in bounds.
Original
Safety
You must ensure that index
is within bounds (within the range 0 .. self.len()
), or this method will introduce memory safety and/or
undefined behavior.
It is library-level undefined behavior to index beyond the length of any bit-slice, even if you know that the offset remains within an allocation as measured by Rust or LLVM.
Examples
use bitvec::prelude::*;
let mut data = 0u8;
let bits = &mut data.view_bits_mut::<Lsb0>()[.. 3];
unsafe {
bits.get_unchecked_mut(1).commit(true);
bits.get_unchecked_mut(4 .. 6).fill(true);
}
assert_eq!(data, 0b0011_0010);
pub fn as_ptr(&self) -> BitPtr<Const, T, O>
.as_bitptr()
insteadpub fn as_mut_ptr(&mut self) -> BitPtr<Mut, T, O>
.as_mut_bitptr()
insteadsourcepub fn as_ptr_range(&self) -> Range<BitPtr<Const, T, O>>
pub fn as_ptr_range(&self) -> Range<BitPtr<Const, T, O>>
Produces a range of bit-pointers to each bit in the bit-slice.
This is a standard-library range, which has no real functionality for
pointer types. You should prefer .as_bitptr_range()
instead, as it
produces a custom structure that provides expected ranging
functionality.
Original
sourcepub fn as_mut_ptr_range(&mut self) -> Range<BitPtr<Mut, T, O>>
pub fn as_mut_ptr_range(&mut self) -> Range<BitPtr<Mut, T, O>>
Produces a range of mutable bit-pointers to each bit in the bit-slice.
This is a standard-library range, which has no real functionality for
pointer types. You should prefer .as_mut_bitptr_range()
instead, as
it produces a custom structure that provides expected ranging
functionality.
Original
sourcepub fn swap(&mut self, a: usize, b: usize)
pub fn swap(&mut self, a: usize, b: usize)
sourcepub fn reverse(&mut self)
pub fn reverse(&mut self)
sourcepub fn iter(&self) -> Iter<'_, T, O> ⓘ
pub fn iter(&self) -> Iter<'_, T, O> ⓘ
Produces an iterator over each bit in the bit-slice.
Original
API Differences
This iterator yields proxy-reference structures, not &bool
. It can be
adapted to yield &bool
with the .by_refs()
method, or bool
with
.by_vals()
.
This iterator, and its adapters, are fast. Do not try to be more clever
than them by abusing .as_bitptr_range()
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 1];
let mut iter = bits.iter();
assert!(!iter.next().unwrap());
assert!( iter.next().unwrap());
assert!( iter.next_back().unwrap());
assert!(!iter.next_back().unwrap());
assert!( iter.next().is_none());
sourcepub fn iter_mut(&mut self) -> IterMut<'_, T, O> ⓘ
pub fn iter_mut(&mut self) -> IterMut<'_, T, O> ⓘ
Produces a mutable iterator over each bit in the bit-slice.
Original
API Differences
This iterator yields proxy-reference structures, not &mut bool
. In
addition, it marks each proxy as alias-tainted.
If you are using this in an ordinary loop and not keeping multiple
yielded proxy-references alive at the same scope, you may use the
.remove_alias()
adapter to undo the alias marking.
This iterator is fast. Do not try to be more clever than it by abusing
.as_mut_bitptr_range()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 4];
let mut iter = bits.iter_mut();
iter.nth(1).unwrap().commit(true); // index 1
iter.next_back().unwrap().commit(true); // index 3
assert!(iter.next().is_some()); // index 2
assert!(iter.next().is_none()); // complete
assert_eq!(bits, bits![0, 1, 0, 1]);
sourcepub fn windows(&self, size: usize) -> Windows<'_, T, O> ⓘ
pub fn windows(&self, size: usize) -> Windows<'_, T, O> ⓘ
Iterates over consecutive windowing subslices in a bit-slice.
Windows are overlapping views of the bit-slice. Each window advances one
bit from the previous, so in a bit-slice [A, B, C, D, E]
, calling
.windows(3)
will yield [A, B, C]
, [B, C, D]
, and [C, D, E]
.
Original
Panics
This panics if size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1];
let mut iter = bits.windows(3);
assert_eq!(iter.next(), Some(bits![0, 1, 0]));
assert_eq!(iter.next(), Some(bits![1, 0, 0]));
assert_eq!(iter.next(), Some(bits![0, 0, 1]));
assert!(iter.next().is_none());
sourcepub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T, O> ⓘ
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T, O> ⓘ
Iterates over non-overlapping subslices of a bit-slice.
Unlike .windows()
, the subslices this yields do not overlap with each
other. If self.len()
is not an even multiple of chunk_size
, then the
last chunk yielded will be shorter.
Original
Sibling Methods
.chunks_mut()
has the same division logic, but each yielded bit-slice is mutable..chunks_exact()
does not yield the final chunk if it is shorter thanchunk_size
..rchunks()
iterates from the back of the bit-slice to the front, with the final, possibly-shorter, segment at the front edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1];
let mut iter = bits.chunks(2);
assert_eq!(iter.next(), Some(bits![0, 1]));
assert_eq!(iter.next(), Some(bits![0, 0]));
assert_eq!(iter.next(), Some(bits![1]));
assert!(iter.next().is_none());
sourcepub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T, O> ⓘ
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T, O> ⓘ
Iterates over non-overlapping mutable subslices of a bit-slice.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
Sibling Methods
.chunks()
has the same division logic, but each yielded bit-slice is immutable..chunks_exact_mut()
does not yield the final chunk if it is shorter thanchunk_size
..rchunks_mut()
iterates from the back of the bit-slice to the front, with the final, possibly-shorter, segment at the front edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![mut u8, Msb0; 0; 5];
for (idx, chunk) in unsafe {
bits.chunks_mut(2).remove_alias()
}.enumerate() {
chunk.store(idx + 1);
}
assert_eq!(bits, bits![0, 1, 1, 0, 1]);
// ^^^^ ^^^^ ^
sourcepub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T, O> ⓘ
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T, O> ⓘ
Iterates over non-overlapping subslices of a bit-slice.
If self.len()
is not an even multiple of chunk_size
, then the last
few bits are not yielded by the iterator at all. They can be accessed
with the .remainder()
method if the iterator is bound to a name.
Original
Sibling Methods
.chunks()
yields any leftover bits at the end as a shorter chunk during iteration..chunks_exact_mut()
has the same division logic, but each yielded bit-slice is mutable..rchunks_exact()
iterates from the back of the bit-slice to the front, with the unyielded remainder segment at the front edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1];
let mut iter = bits.chunks_exact(2);
assert_eq!(iter.next(), Some(bits![0, 1]));
assert_eq!(iter.next(), Some(bits![0, 0]));
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), bits![1]);
sourcepub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T, O> ⓘ
pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T, O> ⓘ
Iterates over non-overlapping mutable subslices of a bit-slice.
If self.len()
is not an even multiple of chunk_size
, then the last
few bits are not yielded by the iterator at all. They can be accessed
with the .into_remainder()
method if the iterator is bound to a
name.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
Sibling Methods
.chunks_mut()
yields any leftover bits at the end as a shorter chunk during iteration..chunks_exact()
has the same division logic, but each yielded bit-slice is immutable..rchunks_exact_mut()
iterates from the back of the bit-slice forwards, with the unyielded remainder segment at the front edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![mut u8, Msb0; 0; 5];
let mut iter = bits.chunks_exact_mut(2);
for (idx, chunk) in iter.by_ref().enumerate() {
chunk.store(idx + 1);
}
iter.into_remainder().store(1u8);
assert_eq!(bits, bits![0, 1, 1, 0, 1]);
// remainder ^
sourcepub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T, O> ⓘ
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T, O> ⓘ
Iterates over non-overlapping subslices of a bit-slice, from the back edge.
Unlike .chunks()
, this aligns its chunks to the back edge of self
.
If self.len()
is not an even multiple of chunk_size
, then the
leftover partial chunk is self[0 .. len % chunk_size]
.
Original
Sibling Methods
.rchunks_mut()
has the same division logic, but each yielded bit-slice is mutable..rchunks_exact()
does not yield the final chunk if it is shorter thanchunk_size
..chunks()
iterates from the front of the bit-slice to the back, with the final, possibly-shorter, segment at the back edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1];
let mut iter = bits.rchunks(2);
assert_eq!(iter.next(), Some(bits![0, 1]));
assert_eq!(iter.next(), Some(bits![1, 0]));
assert_eq!(iter.next(), Some(bits![0]));
assert!(iter.next().is_none());
sourcepub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T, O> ⓘ
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T, O> ⓘ
Iterates over non-overlapping mutable subslices of a bit-slice, from the back edge.
Unlike .chunks_mut()
, this aligns its chunks to the back edge of
self
. If self.len()
is not an even multiple of chunk_size
, then
the leftover partial chunk is self[0 .. len % chunk_size]
.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded values for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
Sibling Methods
.rchunks()
has the same division logic, but each yielded bit-slice is immutable..rchunks_exact_mut()
does not yield the final chunk if it is shorter thanchunk_size
..chunks_mut()
iterates from the front of the bit-slice to the back, with the final, possibly-shorter, segment at the back edge.
Examples
use bitvec::prelude::*;
let bits = bits![mut u8, Msb0; 0; 5];
for (idx, chunk) in unsafe {
bits.rchunks_mut(2).remove_alias()
}.enumerate() {
chunk.store(idx + 1);
}
assert_eq!(bits, bits![1, 1, 0, 0, 1]);
// remainder ^ ^^^^ ^^^^
sourcepub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T, O> ⓘ
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T, O> ⓘ
Iterates over non-overlapping subslices of a bit-slice, from the back edge.
If self.len()
is not an even multiple of chunk_size
, then the first
few bits are not yielded by the iterator at all. They can be accessed
with the .remainder()
method if the iterator is bound to a name.
Original
Sibling Methods
.rchunks()
yields any leftover bits at the front as a shorter chunk during iteration..rchunks_exact_mut()
has the same division logic, but each yielded bit-slice is mutable..chunks_exact()
iterates from the front of the bit-slice to the back, with the unyielded remainder segment at the back edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1];
let mut iter = bits.rchunks_exact(2);
assert_eq!(iter.next(), Some(bits![0, 1]));
assert_eq!(iter.next(), Some(bits![1, 0]));
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), bits![0]);
sourcepub fn rchunks_exact_mut(
&mut self,
chunk_size: usize
) -> RChunksExactMut<'_, T, O> ⓘ
pub fn rchunks_exact_mut(
&mut self,
chunk_size: usize
) -> RChunksExactMut<'_, T, O> ⓘ
Iterates over non-overlapping mutable subslices of a bit-slice, from the back edge.
If self.len()
is not an even multiple of chunk_size
, then the first
few bits are not yielded by the iterator at all. They can be accessed
with the .into_remainder()
method if the iterator is bound to a
name.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Sibling Methods
.rchunks_mut()
yields any leftover bits at the front as a shorter chunk during iteration..rchunks_exact()
has the same division logic, but each yielded bit-slice is immutable..chunks_exact_mut()
iterates from the front of the bit-slice backwards, with the unyielded remainder segment at the back edge.
Panics
This panics if chunk_size
is 0
.
Examples
use bitvec::prelude::*;
let bits = bits![mut u8, Msb0; 0; 5];
let mut iter = bits.rchunks_exact_mut(2);
for (idx, chunk) in iter.by_ref().enumerate() {
chunk.store(idx + 1);
}
iter.into_remainder().store(1u8);
assert_eq!(bits, bits![1, 1, 0, 0, 1]);
// remainder ^
sourcepub fn split_at(&self, mid: usize) -> (&Self, &Self)
pub fn split_at(&self, mid: usize) -> (&Self, &Self)
Splits a bit-slice in two parts at an index.
The returned bit-slices are self[.. mid]
and self[mid ..]
. mid
is
included in the right bit-slice, not the left.
If mid
is 0
then the left bit-slice is empty; if it is self.len()
then the right bit-slice is empty.
This method guarantees that even when either partition is empty, the
encoded bit-pointer values of the bit-slice references is &self[0]
and
&self[mid]
.
Original
Panics
This panics if mid
is greater than self.len()
. It is allowed to be
equal to the length, in which case the right bit-slice is simply empty.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 0, 1, 1, 1];
let base = bits.as_bitptr();
let (a, b) = bits.split_at(0);
assert_eq!(unsafe { a.as_bitptr().offset_from(base) }, 0);
assert_eq!(unsafe { b.as_bitptr().offset_from(base) }, 0);
let (a, b) = bits.split_at(6);
assert_eq!(unsafe { b.as_bitptr().offset_from(base) }, 6);
let (a, b) = bits.split_at(3);
assert_eq!(a, bits![0; 3]);
assert_eq!(b, bits![1; 3]);
sourcepub fn split_at_mut(
&mut self,
mid: usize
) -> (&mut BitSlice<T::Alias, O>, &mut BitSlice<T::Alias, O>)
pub fn split_at_mut(
&mut self,
mid: usize
) -> (&mut BitSlice<T::Alias, O>, &mut BitSlice<T::Alias, O>)
Splits a mutable bit-slice in two parts at an index.
The returned bit-slices are self[.. mid]
and self[mid ..]
. mid
is
included in the right bit-slice, not the left.
If mid
is 0
then the left bit-slice is empty; if it is self.len()
then the right bit-slice is empty.
This method guarantees that even when either partition is empty, the
encoded bit-pointer values of the bit-slice references is &self[0]
and
&self[mid]
.
Original
API Differences
The end bits of the left half and the start bits of the right half might
be stored in the same memory element. In order to avoid breaking
bitvec
’s memory-safety guarantees, both bit-slices are marked as
T::Alias
. This marking allows them to be used without interfering with
each other when they interact with memory.
Panics
This panics if mid
is greater than self.len()
. It is allowed to be
equal to the length, in which case the right bit-slice is simply empty.
Examples
use bitvec::prelude::*;
let bits = bits![mut u8, Msb0; 0; 6];
let base = bits.as_mut_bitptr();
let (a, b) = bits.split_at_mut(0);
assert_eq!(unsafe { a.as_mut_bitptr().offset_from(base) }, 0);
assert_eq!(unsafe { b.as_mut_bitptr().offset_from(base) }, 0);
let (a, b) = bits.split_at_mut(6);
assert_eq!(unsafe { b.as_mut_bitptr().offset_from(base) }, 6);
let (a, b) = bits.split_at_mut(3);
a.store(3);
b.store(5);
assert_eq!(bits, bits![0, 1, 1, 1, 0, 1]);
sourcepub fn split<F>(&self, pred: F) -> Split<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn split<F>(&self, pred: F) -> Split<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over subslices separated by bits that match a predicate. The matched bit is not contained in the yielded bit-slices.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.split_mut()
has the same splitting logic, but each yielded bit-slice is mutable..split_inclusive()
includes the matched bit in the yielded bit-slice..rsplit()
iterates from the back of the bit-slice instead of the front..splitn()
times out aftern
yields.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 1, 0];
// ^
let mut iter = bits.split(|pos, _bit| pos % 3 == 2);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert_eq!(iter.next().unwrap(), bits![0]);
assert!(iter.next().is_none());
If the first bit is matched, then an empty bit-slice will be the first item yielded by the iterator. Similarly, if the last bit in the bit-slice matches, then an empty bit-slice will be the last item yielded.
use bitvec::prelude::*;
let bits = bits![0, 0, 1];
// ^
let mut iter = bits.split(|_pos, bit| *bit);
assert_eq!(iter.next().unwrap(), bits![0; 2]);
assert!(iter.next().unwrap().is_empty());
assert!(iter.next().is_none());
If two matched bits are directly adjacent, then an empty bit-slice will be yielded between them:
use bitvec::prelude::*;
let bits = bits![1, 0, 0, 1];
// ^ ^
let mut iter = bits.split(|_pos, bit| !*bit);
assert_eq!(iter.next().unwrap(), bits![1]);
assert!(iter.next().unwrap().is_empty());
assert_eq!(iter.next().unwrap(), bits![1]);
assert!(iter.next().is_none());
sourcepub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over mutable subslices separated by bits that match a predicate. The matched bit is not contained in the yielded bit-slices.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.split()
has the same splitting logic, but each yielded bit-slice is immutable..split_inclusive_mut()
includes the matched bit in the yielded bit-slice..rsplit_mut()
iterates from the back of the bit-slice instead of the front..splitn_mut()
times out aftern
yields.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 1, 0, 1, 0];
// ^ ^
for group in bits.split_mut(|_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(bits, bits![1, 0, 1, 1, 1, 1]);
sourcepub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over subslices separated by bits that match a predicate. Unlike
.split()
, this does include the matching bit as the last bit in the
yielded bit-slice.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.split_inclusive_mut()
has the same splitting logic, but each yielded bit-slice is mutable..split()
does not include the matched bit in the yielded bit-slice.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 1, 0, 1];
// ^ ^
let mut iter = bits.split_inclusive(|_pos, bit| *bit);
assert_eq!(iter.next().unwrap(), bits![0, 0, 1]);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert!(iter.next().is_none());
sourcepub fn split_inclusive_mut<F>(
&mut self,
pred: F
) -> SplitInclusiveMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn split_inclusive_mut<F>(
&mut self,
pred: F
) -> SplitInclusiveMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over mutable subslices separated by bits that match a
predicate. Unlike .split_mut()
, this does include the matching bit
as the last bit in the bit-slice.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.split_inclusive()
has the same splitting logic, but each yielded bit-slice is immutable..split_mut()
does not include the matched bit in the yielded bit-slice.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 0, 0, 0];
// ^
for group in bits.split_inclusive_mut(|pos, _bit| pos % 3 == 2) {
group.set(0, true);
}
assert_eq!(bits, bits![1, 0, 0, 1, 0]);
sourcepub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over subslices separated by bits that match a predicate, from the back edge. The matched bit is not contained in the yielded bit-slices.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.rsplit_mut()
has the same splitting logic, but each yielded bit-slice is mutable..split()
iterates from the front of the bit-slice instead of the back..rsplitn()
times out aftern
yields.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 1, 0];
// ^
let mut iter = bits.rsplit(|pos, _bit| pos % 3 == 2);
assert_eq!(iter.next().unwrap(), bits![0]);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert!(iter.next().is_none());
If the last bit is matched, then an empty bit-slice will be the first item yielded by the iterator. Similarly, if the first bit in the bit-slice matches, then an empty bit-slice will be the last item yielded.
use bitvec::prelude::*;
let bits = bits![0, 0, 1];
// ^
let mut iter = bits.rsplit(|_pos, bit| *bit);
assert!(iter.next().unwrap().is_empty());
assert_eq!(iter.next().unwrap(), bits![0; 2]);
assert!(iter.next().is_none());
If two yielded bits are directly adjacent, then an empty bit-slice will be yielded between them:
use bitvec::prelude::*;
let bits = bits![1, 0, 0, 1];
// ^ ^
let mut iter = bits.split(|_pos, bit| !*bit);
assert_eq!(iter.next().unwrap(), bits![1]);
assert!(iter.next().unwrap().is_empty());
assert_eq!(iter.next().unwrap(), bits![1]);
assert!(iter.next().is_none());
sourcepub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over mutable subslices separated by bits that match a predicate, from the back. The matched bit is not contained in the yielded bit-slices.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.rsplit()
has the same splitting logic, but each yielded bit-slice is immutable..split_mut()
iterates from the front of the bit-slice to the back..rsplitn_mut()
iterates from the front of the bit-slice to the back.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 1, 0, 1, 0];
// ^ ^
for group in bits.rsplit_mut(|_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(bits, bits![1, 0, 1, 1, 1, 1]);
sourcepub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over subslices separated by bits that match a predicate, giving
up after yielding n
times. The n
th yield contains the rest of the
bit-slice. As with .split()
, the yielded bit-slices do not contain the
matched bit.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.splitn_mut()
has the same splitting logic, but each yielded bit-slice is mutable..rsplitn()
iterates from the back of the bit-slice instead of the front..split()
has the same splitting logic, but never times out.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 1, 0, 1, 0];
let mut iter = bits.splitn(2, |_pos, bit| *bit);
assert_eq!(iter.next().unwrap(), bits![0, 0]);
assert_eq!(iter.next().unwrap(), bits![0, 1, 0]);
assert!(iter.next().is_none());
sourcepub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over mutable subslices separated by bits that match a
predicate, giving up after yielding n
times. The n
th yield contains
the rest of the bit-slice. As with .split_mut()
, the yielded
bit-slices do not contain the matched bit.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.splitn()
has the same splitting logic, but each yielded bit-slice is immutable..rsplitn_mut()
iterates from the back of the bit-slice instead of the front..split_mut()
has the same splitting logic, but never times out.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 1, 0, 1, 0];
for group in bits.splitn_mut(2, |_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(bits, bits![1, 0, 1, 1, 1, 0]);
sourcepub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over mutable subslices separated by bits that match a
predicate from the back edge, giving up after yielding n
times. The
n
th yield contains the rest of the bit-slice. As with .split_mut()
,
the yielded bit-slices do not contain the matched bit.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.rsplitn_mut()
has the same splitting logic, but each yielded bit-slice is mutable..splitn()
: iterates from the front of the bit-slice instead of the back..rsplit()
has the same splitting logic, but never times out.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 1, 1, 0];
// ^
let mut iter = bits.rsplitn(2, |_pos, bit| *bit);
assert_eq!(iter.next().unwrap(), bits![0]);
assert_eq!(iter.next().unwrap(), bits![0, 0, 1]);
assert!(iter.next().is_none());
sourcepub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, O, F> ⓘwhere
F: FnMut(usize, &bool) -> bool,
Iterates over mutable subslices separated by bits that match a
predicate from the back edge, giving up after yielding n
times. The
n
th yield contains the rest of the bit-slice. As with .split_mut()
,
the yielded bit-slices do not contain the matched bit.
Iterators do not require that each yielded item is destroyed before the
next is produced. This means that each bit-slice yielded must be marked
as aliased. If you are using this in a loop that does not collect
multiple yielded subslices for the same scope, then you can remove the
alias marking by calling the (unsafe
) method .remove_alias()
on
the iterator.
Original
API Differences
The predicate function receives the index being tested as well as the bit value at that index. This allows the predicate to have more than one bit of information about the bit-slice being traversed.
Sibling Methods
.rsplitn()
has the same splitting logic, but each yielded bit-slice is immutable..splitn_mut()
iterates from the front of the bit-slice instead of the back..rsplit_mut()
has the same splitting logic, but never times out.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 1, 0, 0, 1, 0, 0, 0];
for group in bits.rsplitn_mut(2, |_idx, bit| *bit) {
group.set(0, true);
}
assert_eq!(bits, bits![1, 0, 1, 0, 0, 1, 1, 0, 0]);
// ^ group 2 ^ group 1
sourcepub fn contains<T2, O2>(&self, other: &BitSlice<T2, O2>) -> boolwhere
T2: BitStore,
O2: BitOrder,
pub fn contains<T2, O2>(&self, other: &BitSlice<T2, O2>) -> boolwhere
T2: BitStore,
O2: BitOrder,
Tests if the bit-slice contains the given sequence anywhere within it.
This scans over self.windows(other.len())
until one of the windows
matches. The search key does not need to share type parameters with the
bit-slice being tested, as the comparison is bit-wise. However, sharing
type parameters will accelerate the comparison.
Original
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 1, 0, 1, 1, 0, 0];
assert!( bits.contains(bits![0, 1, 1, 0]));
assert!(!bits.contains(bits![1, 0, 0, 1]));
sourcepub fn starts_with<T2, O2>(&self, needle: &BitSlice<T2, O2>) -> boolwhere
T2: BitStore,
O2: BitOrder,
pub fn starts_with<T2, O2>(&self, needle: &BitSlice<T2, O2>) -> boolwhere
T2: BitStore,
O2: BitOrder,
Tests if the bit-slice begins with the given sequence.
The search key does not need to share type parameters with the bit-slice being tested, as the comparison is bit-wise. However, sharing type parameters will accelerate the comparison.
Original
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 1, 0];
assert!( bits.starts_with(bits![0, 1]));
assert!(!bits.starts_with(bits![1, 0]));
This always returns true
if the needle is empty:
use bitvec::prelude::*;
let bits = bits![0, 1, 0];
let empty = bits![];
assert!(bits.starts_with(empty));
assert!(empty.starts_with(empty));
sourcepub fn ends_with<T2, O2>(&self, needle: &BitSlice<T2, O2>) -> boolwhere
T2: BitStore,
O2: BitOrder,
pub fn ends_with<T2, O2>(&self, needle: &BitSlice<T2, O2>) -> boolwhere
T2: BitStore,
O2: BitOrder,
Tests if the bit-slice ends with the given sequence.
The search key does not need to share type parameters with the bit-slice being tested, as the comparison is bit-wise. However, sharing type parameters will accelerate the comparison.
Original
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 1, 0];
assert!( bits.ends_with(bits![1, 0]));
assert!(!bits.ends_with(bits![0, 1]));
This always returns true
if the needle is empty:
use bitvec::prelude::*;
let bits = bits![0, 1, 0];
let empty = bits![];
assert!(bits.ends_with(empty));
assert!(empty.ends_with(empty));
sourcepub fn strip_prefix<T2, O2>(&self, prefix: &BitSlice<T2, O2>) -> Option<&Self>where
T2: BitStore,
O2: BitOrder,
pub fn strip_prefix<T2, O2>(&self, prefix: &BitSlice<T2, O2>) -> Option<&Self>where
T2: BitStore,
O2: BitOrder,
Removes a prefix bit-slice, if present.
Like .starts_with()
, the search key does not need to share type
parameters with the bit-slice being stripped. If
self.starts_with(suffix)
, then this returns Some(&self[prefix.len() ..])
, otherwise it returns None
.
Original
API Differences
BitSlice
does not support pattern searches; instead, it permits self
and prefix
to differ in type parameters.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1, 0, 1, 1, 0];
assert_eq!(bits.strip_prefix(bits![0, 1]).unwrap(), bits[2 ..]);
assert_eq!(bits.strip_prefix(bits![0, 1, 0, 0,]).unwrap(), bits[4 ..]);
assert!(bits.strip_prefix(bits![1, 0]).is_none());
sourcepub fn strip_suffix<T2, O2>(&self, suffix: &BitSlice<T2, O2>) -> Option<&Self>where
T2: BitStore,
O2: BitOrder,
pub fn strip_suffix<T2, O2>(&self, suffix: &BitSlice<T2, O2>) -> Option<&Self>where
T2: BitStore,
O2: BitOrder,
Removes a suffix bit-slice, if present.
Like .ends_with()
, the search key does not need to share type
parameters with the bit-slice being stripped. If
self.ends_with(suffix)
, then this returns Some(&self[.. self.len() - suffix.len()])
, otherwise it returns None
.
Original
API Differences
BitSlice
does not support pattern searches; instead, it permits self
and suffix
to differ in type parameters.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1, 0, 1, 1, 0];
assert_eq!(bits.strip_suffix(bits![1, 0]).unwrap(), bits[.. 7]);
assert_eq!(bits.strip_suffix(bits![0, 1, 1, 0]).unwrap(), bits[.. 5]);
assert!(bits.strip_suffix(bits![0, 1]).is_none());
sourcepub fn rotate_left(&mut self, by: usize)
pub fn rotate_left(&mut self, by: usize)
Rotates the contents of a bit-slice to the left (towards the zero index).
This essentially splits the bit-slice at by
, then exchanges the two
pieces. self[.. by]
becomes the first section, and is then followed by
self[.. by]
.
The implementation is batch-accelerated where possible. It should have a
runtime complexity much lower than O(by)
.
Original
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 1, 0, 1, 0];
// split occurs here ^
bits.rotate_left(2);
assert_eq!(bits, bits![1, 0, 1, 0, 0, 0]);
sourcepub fn rotate_right(&mut self, by: usize)
pub fn rotate_right(&mut self, by: usize)
Rotates the contents of a bit-slice to the right (away from the zero index).
This essentially splits the bit-slice at self.len() - by
, then
exchanges the two pieces. self[len - by ..]
becomes the first section,
and is then followed by self[.. len - by]
.
The implementation is batch-accelerated where possible. It should have a
runtime complexity much lower than O(by)
.
Original
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 0, 1, 1, 1, 0];
// split occurs here ^
bits.rotate_right(2);
assert_eq!(bits, bits![1, 0, 0, 0, 1, 1]);
sourcepub fn fill(&mut self, value: bool)
pub fn fill(&mut self, value: bool)
Fills the bit-slice with a given bit.
This is a recent stabilization in the standard library. bitvec
previously offered this behavior as the novel API .set_all()
. That
method name is now removed in favor of this standard-library analogue.
Original
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 5];
bits.fill(true);
assert_eq!(bits, bits![1; 5]);
sourcepub fn fill_with<F>(&mut self, func: F)where
F: FnMut(usize) -> bool,
pub fn fill_with<F>(&mut self, func: F)where
F: FnMut(usize) -> bool,
Fills the bit-slice with bits produced by a generator function.
Original
API Differences
The generator function receives the index of the bit being initialized as an argument.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0; 5];
bits.fill_with(|idx| idx % 2 == 0);
assert_eq!(bits, bits![1, 0, 1, 0, 1]);
pub fn clone_from_slice<T2, O2>(&mut self, src: &BitSlice<T2, O2>)where
T2: BitStore,
O2: BitOrder,
.clone_from_bitslice()
insteadpub fn copy_from_slice(&mut self, src: &Self)
.copy_from_bitslice()
insteadsourcepub fn copy_within<R>(&mut self, src: R, dest: usize)where
R: RangeExt<usize>,
pub fn copy_within<R>(&mut self, src: R, dest: usize)where
R: RangeExt<usize>,
Copies a span of bits to another location in the bit-slice.
src
is the range of bit-indices in the bit-slice to copy, and dest is the starting index of the destination range.
srcand
dest .. dest +
src.len()are permitted to overlap; the copy will automatically detect and manage this. However, both
srcand
dest .. dest + src.len()**must** fall within the bounds of
self`.
Original
Panics
This panics if either the source or destination range exceed
self.len()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0];
bits.copy_within(1 .. 5, 8);
// v v v v
assert_eq!(bits, bits![1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0]);
// ^ ^ ^ ^
pub fn swap_with_slice<T2, O2>(&mut self, other: &mut BitSlice<T2, O2>)where
T2: BitStore,
O2: BitOrder,
.swap_with_bitslice()
insteadsourcepub unsafe fn align_to<U>(&self) -> (&Self, &BitSlice<U, O>, &Self)where
U: BitStore,
pub unsafe fn align_to<U>(&self) -> (&Self, &BitSlice<U, O>, &Self)where
U: BitStore,
Produces bit-slice view(s) with different underlying storage types.
This may have unexpected effects, and you cannot assume that
before[idx] == after[idx]
! Consult the tables in the manual
for information about memory layouts.
Original
Notes
Unlike the standard library documentation, this explicitly guarantees that the middle bit-slice will have maximal size. You may rely on this property.
Safety
You may not use this to cast away alias protections. Rust does not have
support for higher-kinded types, so this cannot express the relation
Outer<T> -> Outer<U> where Outer: BitStoreContainer
, but memory safety
does require that you respect this rule. Reälign integers to integers,
Cell
s to Cell
s, and atomics to atomics, but do not cross these
boundaries.
Examples
use bitvec::prelude::*;
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let bits = bytes.view_bits::<Lsb0>();
let (pfx, mid, sfx) = unsafe {
bits.align_to::<u16>()
};
assert!(pfx.len() <= 8);
assert_eq!(mid.len(), 48);
assert!(sfx.len() <= 8);
sourcepub unsafe fn align_to_mut<U>(
&mut self
) -> (&mut Self, &mut BitSlice<U, O>, &mut Self)where
U: BitStore,
pub unsafe fn align_to_mut<U>(
&mut self
) -> (&mut Self, &mut BitSlice<U, O>, &mut Self)where
U: BitStore,
Produces bit-slice view(s) with different underlying storage types.
This may have unexpected effects, and you cannot assume that
before[idx] == after[idx]
! Consult the tables in the manual
for information about memory layouts.
Original
Notes
Unlike the standard library documentation, this explicitly guarantees that the middle bit-slice will have maximal size. You may rely on this property.
Safety
You may not use this to cast away alias protections. Rust does not have
support for higher-kinded types, so this cannot express the relation
Outer<T> -> Outer<U> where Outer: BitStoreContainer
, but memory safety
does require that you respect this rule. Reälign integers to integers,
Cell
s to Cell
s, and atomics to atomics, but do not cross these
boundaries.
Examples
use bitvec::prelude::*;
let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let bits = bytes.view_bits_mut::<Lsb0>();
let (pfx, mid, sfx) = unsafe {
bits.align_to_mut::<u16>()
};
assert!(pfx.len() <= 8);
assert_eq!(mid.len(), 48);
assert!(sfx.len() <= 8);
pub fn to_vec(&self) -> BitVec<T::Unalias, O> ⓘ
.to_bitvec()
insteadsourcepub fn repeat(&self, n: usize) -> BitVec<T::Unalias, O> ⓘ
pub fn repeat(&self, n: usize) -> BitVec<T::Unalias, O> ⓘ
Creates a bit-vector by repeating a bit-slice n
times.
Original
Panics
This method panics if self.len() * n
exceeds the BitVec
capacity.
Examples
use bitvec::prelude::*;
assert_eq!(bits![0, 1].repeat(3), bitvec![0, 1, 0, 1, 0, 1]);
This panics by exceeding bit-vector maximum capacity:
use bitvec::prelude::*;
bits![0, 1].repeat(BitSlice::<usize, Lsb0>::MAX_BITS);
sourcepub fn as_bitptr(&self) -> BitPtr<Const, T, O>
pub fn as_bitptr(&self) -> BitPtr<Const, T, O>
Gets a raw pointer to the zeroth bit of the bit-slice.
Original
API Differences
This is renamed in order to indicate that it is returning a bitvec
structure, not a raw pointer.
sourcepub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, T, O>
pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, T, O>
Gets a raw, write-capable pointer to the zeroth bit of the bit-slice.
Original
API Differences
This is renamed in order to indicate that it is returning a bitvec
structure, not a raw pointer.
sourcepub fn as_bitptr_range(&self) -> BitPtrRange<Const, T, O> ⓘ
pub fn as_bitptr_range(&self) -> BitPtrRange<Const, T, O> ⓘ
Views the bit-slice as a half-open range of bit-pointers, to its first bit in the bit-slice and first bit beyond it.
Original
API Differences
This is renamed to indicate that it returns a bitvec
structure, rather
than an ordinary Range
.
Notes
BitSlice
does define a .as_ptr_range()
, which returns a
Range<BitPtr>
. BitPtrRange
has additional capabilities that
Range<*const T>
and Range<BitPtr>
do not.
sourcepub fn as_mut_bitptr_range(&mut self) -> BitPtrRange<Mut, T, O> ⓘ
pub fn as_mut_bitptr_range(&mut self) -> BitPtrRange<Mut, T, O> ⓘ
Views the bit-slice as a half-open range of write-capable bit-pointers, to its first bit in the bit-slice and the first bit beyond it.
Original
API Differences
This is renamed to indicate that it returns a bitvec
structure, rather
than an ordinary Range
.
Notes
BitSlice
does define a [.as_mut_ptr_range()
], which returns a
Range<BitPtr>
. BitPtrRange
has additional capabilities that
Range<*mut T>
and Range<BitPtr>
do not.
sourcepub fn clone_from_bitslice<T2, O2>(&mut self, src: &BitSlice<T2, O2>)where
T2: BitStore,
O2: BitOrder,
pub fn clone_from_bitslice<T2, O2>(&mut self, src: &BitSlice<T2, O2>)where
T2: BitStore,
O2: BitOrder,
Copies the bits from src
into self
.
self
and src
must have the same length.
Performance
If src
has the same type arguments as self
, it will use the same
implementation as .copy_from_bitslice()
; if you know that this will
always be the case, you should prefer to use that method directly.
Only .copy_from_bitslice()
is able to perform acceleration; this
method is always required to perform a bit-by-bit crawl over both
bit-slices.
Original
API Differences
This is renamed to reflect that it copies from another bit-slice, not from an element slice.
In order to support general usage, it allows src
to have different
type parameters than self
, at the cost of performance optimizations.
Panics
This panics if the two bit-slices have different lengths.
Examples
use bitvec::prelude::*;
sourcepub fn copy_from_bitslice(&mut self, src: &Self)
pub fn copy_from_bitslice(&mut self, src: &Self)
sourcepub fn swap_with_bitslice<T2, O2>(&mut self, other: &mut BitSlice<T2, O2>)where
T2: BitStore,
O2: BitOrder,
pub fn swap_with_bitslice<T2, O2>(&mut self, other: &mut BitSlice<T2, O2>)where
T2: BitStore,
O2: BitOrder,
Swaps the contents of two bit-slices.
self
and other
must have the same length.
Original
API Differences
This method is renamed, as it takes a bit-slice rather than an element slice.
Panics
This panics if the two bit-slices have different lengths.
Examples
use bitvec::prelude::*;
let mut one = [0xA5u8, 0x69];
let mut two = 0x1234u16;
let one_bits = one.view_bits_mut::<Msb0>();
let two_bits = two.view_bits_mut::<Lsb0>();
one_bits.swap_with_bitslice(two_bits);
assert_eq!(one, [0x2C, 0x48]);
assert_eq!(two, 0x96A5);
sourcepub fn set(&mut self, index: usize, value: bool)
pub fn set(&mut self, index: usize, value: bool)
Writes a new value into a single bit.
This is the replacement for *slice[index] = value;
, as bitvec
is not
able to express that under the current IndexMut
API signature.
Parameters
&mut self
index
: The bit-index to set. It must be in0 .. self.len()
.value
: The new bit-value to write into the bit atindex
.
Panics
This panics if index
is out of bounds.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0, 1];
bits.set(0, true);
bits.set(1, false);
assert_eq!(bits, bits![1, 0]);
sourcepub unsafe fn set_unchecked(&mut self, index: usize, value: bool)
pub unsafe fn set_unchecked(&mut self, index: usize, value: bool)
Writes a new value into a single bit, without bounds checking.
Parameters
&mut self
index
: The bit-index to set. It must be in0 .. self.len()
.value
: The new bit-value to write into the bit atindex
.
Safety
You must ensure that index
is in the range 0 .. self.len()
.
This performs bit-pointer offset arithmetic without doing any bounds
checks. If index
is out of bounds, then this will issue an
out-of-bounds access and will trigger memory unsafety.
Examples
use bitvec::prelude::*;
let mut data = 0u8;
let bits = &mut data.view_bits_mut::<Lsb0>()[.. 2];
assert_eq!(bits.len(), 2);
unsafe {
bits.set_unchecked(3, true);
}
assert_eq!(data, 8);
sourcepub unsafe fn replace_unchecked(&mut self, index: usize, value: bool) -> bool
pub unsafe fn replace_unchecked(&mut self, index: usize, value: bool) -> bool
sourcepub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)
pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)
Swaps two bits in a bit-slice, without bounds checking.
See .swap()
for documentation.
Safety
You must ensure that a
and b
are both in the range 0 .. self.len()
.
This method performs bit-pointer offset arithmetic without doing any
bounds checks. If a
or b
are out of bounds, then this will issue an
out-of-bounds access and will trigger memory unsafety.
sourcepub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self)
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self)
Splits a bit-slice at an index, without bounds checking.
See .split_at()
for documentation.
Safety
You must ensure that mid
is in the range 0 ..= self.len()
.
This method produces new bit-slice references. If mid
is out of
bounds, its behavior is library-level undefined. You must
conservatively assume that an out-of-bounds split point produces
compiler-level UB.
sourcepub unsafe fn split_at_unchecked_mut(
&mut self,
mid: usize
) -> (&mut BitSlice<T::Alias, O>, &mut BitSlice<T::Alias, O>)
pub unsafe fn split_at_unchecked_mut(
&mut self,
mid: usize
) -> (&mut BitSlice<T::Alias, O>, &mut BitSlice<T::Alias, O>)
Splits a mutable bit-slice at an index, without bounds checking.
See .split_at_mut()
for documentation.
Safety
You must ensure that mid
is in the range 0 ..= self.len()
.
This method produces new bit-slice references. If mid
is out of
bounds, its behavior is library-level undefined. You must
conservatively assume that an out-of-bounds split point produces
compiler-level UB.
sourcepub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize)where
R: RangeExt<usize>,
pub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize)where
R: RangeExt<usize>,
Copies bits from one region of the bit-slice to another region of itself, without doing bounds checks.
The regions are allowed to overlap.
Parameters
&mut self
src
: The range withinself
from which to copy.dst
: The starting index withinself
at which to paste.
Effects
self[src]
is copied to self[dest .. dest + src.len()]
. The bits of
self[src]
are in an unspecified, but initialized, state.
Safety
src.end()
and dest + src.len()
must be entirely within bounds.
Examples
use bitvec::prelude::*;
let mut data = 0b1011_0000u8;
let bits = data.view_bits_mut::<Msb0>();
unsafe {
bits.copy_within_unchecked(.. 4, 2);
}
assert_eq!(data, 0b1010_1100);
sourcepub fn bit_domain(&self) -> BitDomain<'_, Const, T, O>
pub fn bit_domain(&self) -> BitDomain<'_, Const, T, O>
Partitions a bit-slice into maybe-contended and known-uncontended parts.
The documentation of BitDomain
goes into this in more detail. In
short, this produces a &BitSlice
that is as large as possible without
requiring alias protection, as well as any bits that were not able to be
included in the unaliased bit-slice.
sourcepub fn bit_domain_mut(&mut self) -> BitDomain<'_, Mut, T, O>
pub fn bit_domain_mut(&mut self) -> BitDomain<'_, Mut, T, O>
Partitions a mutable bit-slice into maybe-contended and known-uncontended parts.
The documentation of BitDomain
goes into this in more detail. In
short, this produces a &mut BitSlice
that is as large as possible
without requiring alias protection, as well as any bits that were not
able to be included in the unaliased bit-slice.
sourcepub fn domain(&self) -> Domain<'_, Const, T, O> ⓘ
pub fn domain(&self) -> Domain<'_, Const, T, O> ⓘ
Views the underlying memory of a bit-slice, removing alias protections where possible.
The documentation of Domain
goes into this in more detail. In short,
this produces a &[T]
slice with alias protections removed, covering
all elements that self
completely fills. Partially-used elements on
either the front or back edge of the slice are returned separately.
sourcepub fn domain_mut(&mut self) -> Domain<'_, Mut, T, O> ⓘ
pub fn domain_mut(&mut self) -> Domain<'_, Mut, T, O> ⓘ
Views the underlying memory of a bit-slice, removing alias protections where possible.
The documentation of Domain
goes into this in more detail. In short,
this produces a &mut [T]
slice with alias protections removed,
covering all elements that self
completely fills. Partially-used
elements on the front or back edge of the slice are returned separately.
sourcepub fn count_ones(&self) -> usize
pub fn count_ones(&self) -> usize
Counts the number of bits set to 1
in the bit-slice contents.
Examples
use bitvec::prelude::*;
let bits = bits![1, 1, 0, 0];
assert_eq!(bits[.. 2].count_ones(), 2);
assert_eq!(bits[2 ..].count_ones(), 0);
assert_eq!(bits![].count_ones(), 0);
sourcepub fn count_zeros(&self) -> usize
pub fn count_zeros(&self) -> usize
Counts the number of bits cleared to 0
in the bit-slice contents.
Examples
use bitvec::prelude::*;
let bits = bits![1, 1, 0, 0];
assert_eq!(bits[.. 2].count_zeros(), 0);
assert_eq!(bits[2 ..].count_zeros(), 2);
assert_eq!(bits![].count_zeros(), 0);
sourcepub fn iter_ones(&self) -> IterOnes<'_, T, O> ⓘ
pub fn iter_ones(&self) -> IterOnes<'_, T, O> ⓘ
Enumerates the index of each bit in a bit-slice set to 1
.
This is a shorthand for a .enumerate().filter_map()
iterator that
selects the index of each true
bit; however, its implementation is
eligible for optimizations that the individual-bit iterator is not.
Specializations for the Lsb0
and Msb0
orderings allow processors
with instructions that seek particular bits within an element to operate
on whole elements, rather than on each bit individually.
Examples
This example uses .iter_ones()
, a .filter_map()
that finds the index
of each set bit, and the known indices, in order to show that they have
equivalent behavior.
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1, 0, 0, 0, 1];
let iter_ones = bits.iter_ones();
let known_indices = [1, 4, 8].iter().copied();
let filter = bits.iter()
.by_vals()
.enumerate()
.filter_map(|(idx, bit)| if bit { Some(idx) } else { None });
let all = iter_ones.zip(known_indices).zip(filter);
for ((iter_one, known), filtered) in all {
assert_eq!(iter_one, known);
assert_eq!(known, filtered);
}
sourcepub fn iter_zeros(&self) -> IterZeros<'_, T, O> ⓘ
pub fn iter_zeros(&self) -> IterZeros<'_, T, O> ⓘ
Enumerates the index of each bit in a bit-slice cleared to 0
.
This is a shorthand for a .enumerate().filter_map()
iterator that
selects the index of each false
bit; however, its implementation is
eligible for optimizations that the individual-bit iterator is not.
Specializations for the Lsb0
and Msb0
orderings allow processors
with instructions that seek particular bits within an element to operate
on whole elements, rather than on each bit individually.
Examples
This example uses .iter_zeros()
, a .filter_map()
that finds the
index of each cleared bit, and the known indices, in order to show that
they have equivalent behavior.
use bitvec::prelude::*;
let bits = bits![1, 0, 1, 1, 0, 1, 1, 1, 0];
let iter_zeros = bits.iter_zeros();
let known_indices = [1, 4, 8].iter().copied();
let filter = bits.iter()
.by_vals()
.enumerate()
.filter_map(|(idx, bit)| if !bit { Some(idx) } else { None });
let all = iter_zeros.zip(known_indices).zip(filter);
for ((iter_zero, known), filtered) in all {
assert_eq!(iter_zero, known);
assert_eq!(known, filtered);
}
sourcepub fn first_one(&self) -> Option<usize>
pub fn first_one(&self) -> Option<usize>
Finds the index of the first bit in the bit-slice set to 1
.
Returns None
if there is no true
bit in the bit-slice.
Examples
use bitvec::prelude::*;
assert!(bits![].first_one().is_none());
assert!(bits![0].first_one().is_none());
assert_eq!(bits![0, 1].first_one(), Some(1));
sourcepub fn first_zero(&self) -> Option<usize>
pub fn first_zero(&self) -> Option<usize>
Finds the index of the first bit in the bit-slice cleared to 0
.
Returns None
if there is no false
bit in the bit-slice.
Examples
use bitvec::prelude::*;
assert!(bits![].first_zero().is_none());
assert!(bits![1].first_zero().is_none());
assert_eq!(bits![1, 0].first_zero(), Some(1));
sourcepub fn last_one(&self) -> Option<usize>
pub fn last_one(&self) -> Option<usize>
Finds the index of the last bit in the bit-slice set to 1
.
Returns None
if there is no true
bit in the bit-slice.
Examples
use bitvec::prelude::*;
assert!(bits![].last_one().is_none());
assert!(bits![0].last_one().is_none());
assert_eq!(bits![1, 0].last_one(), Some(0));
sourcepub fn last_zero(&self) -> Option<usize>
pub fn last_zero(&self) -> Option<usize>
Finds the index of the last bit in the bit-slice cleared to 0
.
Returns None
if there is no false
bit in the bit-slice.
Examples
use bitvec::prelude::*;
assert!(bits![].last_zero().is_none());
assert!(bits![1].last_zero().is_none());
assert_eq!(bits![0, 1].last_zero(), Some(0));
sourcepub fn leading_ones(&self) -> usize
pub fn leading_ones(&self) -> usize
Counts the number of bits from the start of the bit-slice to the first
bit set to 0
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].leading_ones(), 0);
assert_eq!(bits![0].leading_ones(), 0);
assert_eq!(bits![1, 0].leading_ones(), 1);
sourcepub fn leading_zeros(&self) -> usize
pub fn leading_zeros(&self) -> usize
Counts the number of bits from the start of the bit-slice to the first
bit set to 1
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].leading_zeros(), 0);
assert_eq!(bits![1].leading_zeros(), 0);
assert_eq!(bits![0, 1].leading_zeros(), 1);
sourcepub fn trailing_ones(&self) -> usize
pub fn trailing_ones(&self) -> usize
Counts the number of bits from the end of the bit-slice to the last bit
set to 0
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].trailing_ones(), 0);
assert_eq!(bits![0].trailing_ones(), 0);
assert_eq!(bits![0, 1].trailing_ones(), 1);
sourcepub fn trailing_zeros(&self) -> usize
pub fn trailing_zeros(&self) -> usize
Counts the number of bits from the end of the bit-slice to the last bit
set to 1
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].trailing_zeros(), 0);
assert_eq!(bits![1].trailing_zeros(), 0);
assert_eq!(bits![1, 0].trailing_zeros(), 1);
sourcepub fn any(&self) -> bool
pub fn any(&self) -> bool
Tests if there is at least one bit set to 1
in the bit-slice.
Returns false
when self
is empty.
Examples
use bitvec::prelude::*;
assert!(!bits![].any());
assert!(!bits![0].any());
assert!(bits![0, 1].any());
sourcepub fn all(&self) -> bool
pub fn all(&self) -> bool
Tests if every bit is set to 1
in the bit-slice.
Returns true
when self
is empty.
Examples
use bitvec::prelude::*;
assert!( bits![].all());
assert!(!bits![0].all());
assert!( bits![1].all());
sourcepub fn not_any(&self) -> bool
pub fn not_any(&self) -> bool
Tests if every bit is cleared to 0
in the bit-slice.
Returns true
when self
is empty.
Examples
use bitvec::prelude::*;
assert!( bits![].not_any());
assert!(!bits![1].not_any());
assert!( bits![0].not_any());
sourcepub fn not_all(&self) -> bool
pub fn not_all(&self) -> bool
Tests if at least one bit is cleared to 0
in the bit-slice.
Returns false
when self
is empty.
Examples
use bitvec::prelude::*;
assert!(!bits![].not_all());
assert!(!bits![1].not_all());
assert!( bits![0].not_all());
sourcepub fn some(&self) -> bool
pub fn some(&self) -> bool
Tests if at least one bit is set to 1
, and at least one bit is cleared
to 0
, in the bit-slice.
Returns false
when self
is empty.
Examples
use bitvec::prelude::*;
assert!(!bits![].some());
assert!(!bits![0].some());
assert!(!bits![1].some());
assert!( bits![0, 1].some());
sourcepub fn shift_left(&mut self, by: usize)
pub fn shift_left(&mut self, by: usize)
Shifts the contents of a bit-slice “left” (towards the zero-index),
clearing the “right” bits to 0
.
This is a strictly-worse analogue to taking bits = &bits[by ..]
: it
has to modify the entire memory region that bits
governs, and destroys
contained information. Unless the actual memory layout and contents of
your bit-slice matters to your program, you should probably prefer to
munch your way forward through a bit-slice handle.
Note also that the “left” here is semantic only, and does not necessarily correspond to a left-shift instruction applied to the underlying integer storage.
This has no effect when by
is 0
. When by
is self.len()
, the
bit-slice is entirely cleared to 0
.
Panics
This panics if by
is not less than self.len()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1];
// these bits are retained ^--------------------------^
bits.shift_left(2);
assert_eq!(bits, bits![1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0]);
// and move here ^--------------------------^
let bits = bits![mut 1; 2];
bits.shift_left(2);
assert_eq!(bits, bits![0; 2]);
sourcepub fn shift_right(&mut self, by: usize)
pub fn shift_right(&mut self, by: usize)
Shifts the contents of a bit-slice “right” (away from the zero-index),
clearing the “left” bits to 0
.
This is a strictly-worse analogue to taking `bits = &bits[.. bits.len()
- by]
: it must modify the entire memory region that
bits` governs, and destroys contained information. Unless the actual memory layout and contents of your bit-slice matters to your program, you should probably prefer to munch your way backward through a bit-slice handle.
Note also that the “right” here is semantic only, and does not necessarily correspond to a right-shift instruction applied to the underlying integer storage.
This has no effect when by
is 0
. When by
is self.len()
, the
bit-slice is entirely cleared to 0
.
Panics
This panics if by
is not less than self.len()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1];
// these bits stay ^--------------------------^
bits.shift_right(2);
assert_eq!(bits, bits![0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1]);
// and move here ^--------------------------^
let bits = bits![mut 1; 2];
bits.shift_right(2);
assert_eq!(bits, bits![0; 2]);
sourcepub fn set_aliased(&self, index: usize, value: bool)
pub fn set_aliased(&self, index: usize, value: bool)
Writes a new value into a single bit, using alias-safe operations.
This is equivalent to .set()
, except that it does not require an
&mut
reference, and allows bit-slices with alias-safe storage to share
write permissions.
Parameters
&self
: This method only exists on bit-slices with alias-safe storage, and so does not require exclusive access.index
: The bit index to set. It must be in0 .. self.len()
.value
: The new bit-value to write into the bit atindex
.
Panics
This panics if index
is out of bounds.
Examples
use bitvec::prelude::*;
use core::cell::Cell;
let bits: &BitSlice<_, _> = bits![Cell<usize>, Lsb0; 0, 1];
bits.set_aliased(0, true);
bits.set_aliased(1, false);
assert_eq!(bits, bits![1, 0]);
sourcepub unsafe fn set_aliased_unchecked(&self, index: usize, value: bool)
pub unsafe fn set_aliased_unchecked(&self, index: usize, value: bool)
Writes a new value into a single bit, using alias-safe operations and without bounds checking.
This is equivalent to .set_unchecked()
, except that it does not
require an &mut
reference, and allows bit-slices with alias-safe
storage to share write permissions.
Parameters
&self
: This method only exists on bit-slices with alias-safe storage, and so does not require exclusive access.index
: The bit index to set. It must be in0 .. self.len()
.value
: The new bit-value to write into the bit atindex
.
Safety
The caller must ensure that index
is not out of bounds.
Examples
use bitvec::prelude::*;
use core::cell::Cell;
let data = Cell::new(0u8);
let bits = &data.view_bits::<Lsb0>()[.. 2];
unsafe {
bits.set_aliased_unchecked(3, true);
}
assert_eq!(data.get(), 8);
pub const MAX_BITS: usize = 2_305_843_009_213_693_951usize
pub const MAX_ELTS: usize = BitSpan<Const, T, O>::REGION_MAX_ELTS
sourcepub fn to_bitvec(&self) -> BitVec<T::Unalias, O> ⓘ
pub fn to_bitvec(&self) -> BitVec<T::Unalias, O> ⓘ
Copies a bit-slice into an owned bit-vector.
Since the new vector is freshly owned, this gets marked as ::Unalias
to remove any guards that may have been inserted by the bit-slice’s
history.
It does not use the underlying memory type, so that a BitSlice<_, Cell<_>>
will produce a BitVec<_, Cell<_>>
.
Original
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 1];
let bv = bits.to_bitvec();
assert_eq!(bits, bv);
Trait Implementations§
source§impl<T, O, Rhs> BitAnd<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitAndAssign<Rhs>,
impl<T, O, Rhs> BitAnd<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitAndAssign<Rhs>,
source§impl<T, O> BitAndAssign<&BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitAndAssign<&BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
source§fn bitand_assign(&mut self, rhs: &BitBox<T, O>)
fn bitand_assign(&mut self, rhs: &BitBox<T, O>)
&=
operation. Read moresource§impl<T, O> BitAndAssign<BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitAndAssign<BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
source§fn bitand_assign(&mut self, rhs: BitBox<T, O>)
fn bitand_assign(&mut self, rhs: BitBox<T, O>)
&=
operation. Read moresource§impl<T, O, Rhs> BitAndAssign<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitAndAssign<Rhs>,
impl<T, O, Rhs> BitAndAssign<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitAndAssign<Rhs>,
source§fn bitand_assign(&mut self, rhs: Rhs)
fn bitand_assign(&mut self, rhs: Rhs)
&=
operation. Read moresource§impl<T, O> BitField for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitField,
impl<T, O> BitField for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitField,
source§impl<T, O, Rhs> BitOr<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitOrAssign<Rhs>,
impl<T, O, Rhs> BitOr<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitOrAssign<Rhs>,
source§impl<T, O> BitOrAssign<&BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitOrAssign<&BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
source§fn bitor_assign(&mut self, rhs: &BitBox<T, O>)
fn bitor_assign(&mut self, rhs: &BitBox<T, O>)
|=
operation. Read moresource§impl<T, O> BitOrAssign<BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitOrAssign<BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
source§fn bitor_assign(&mut self, rhs: BitBox<T, O>)
fn bitor_assign(&mut self, rhs: BitBox<T, O>)
|=
operation. Read moresource§impl<T, O, Rhs> BitOrAssign<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitOrAssign<Rhs>,
impl<T, O, Rhs> BitOrAssign<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitOrAssign<Rhs>,
source§fn bitor_assign(&mut self, rhs: Rhs)
fn bitor_assign(&mut self, rhs: Rhs)
|=
operation. Read moresource§impl<T, O, Rhs> BitXor<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitXorAssign<Rhs>,
impl<T, O, Rhs> BitXor<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitXorAssign<Rhs>,
source§impl<T, O> BitXorAssign<&BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitXorAssign<&BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
source§fn bitxor_assign(&mut self, rhs: &BitBox<T, O>)
fn bitxor_assign(&mut self, rhs: &BitBox<T, O>)
^=
operation. Read moresource§impl<T, O> BitXorAssign<BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> BitXorAssign<BitBox<T, O>> for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
source§fn bitxor_assign(&mut self, rhs: BitBox<T, O>)
fn bitxor_assign(&mut self, rhs: BitBox<T, O>)
^=
operation. Read moresource§impl<T, O, Rhs> BitXorAssign<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitXorAssign<Rhs>,
impl<T, O, Rhs> BitXorAssign<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: BitXorAssign<Rhs>,
source§fn bitxor_assign(&mut self, rhs: Rhs)
fn bitxor_assign(&mut self, rhs: Rhs)
^=
operation. Read moresource§impl<T, O, I> FromIterator<I> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitVec<T, O>: FromIterator<I>,
impl<T, O, I> FromIterator<I> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitVec<T, O>: FromIterator<I>,
source§fn from_iter<II>(iter: II) -> Selfwhere
II: IntoIterator<Item = I>,
fn from_iter<II>(iter: II) -> Selfwhere
II: IntoIterator<Item = I>,
source§impl<T, O, Idx> Index<Idx> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: Index<Idx>,
impl<T, O, Idx> Index<Idx> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: Index<Idx>,
source§impl<T, O, Idx> IndexMut<Idx> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: IndexMut<Idx>,
impl<T, O, Idx> IndexMut<Idx> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
BitSlice<T, O>: IndexMut<Idx>,
source§impl<T, O> Ord for BitBox<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> Ord for BitBox<T, O>where
T: BitStore,
O: BitOrder,
source§impl<O1, O2, T1, T2> PartialEq<BitBox<T2, O2>> for &BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
impl<O1, O2, T1, T2> PartialEq<BitBox<T2, O2>> for &BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
source§impl<O1, O2, T1, T2> PartialEq<BitBox<T2, O2>> for &mut BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
impl<O1, O2, T1, T2> PartialEq<BitBox<T2, O2>> for &mut BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
source§impl<O1, O2, T1, T2> PartialEq<BitBox<T2, O2>> for BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
impl<O1, O2, T1, T2> PartialEq<BitBox<T2, O2>> for BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
source§impl<T, O, Rhs> PartialEq<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
Rhs: ?Sized + PartialEq<BitSlice<T, O>>,
impl<T, O, Rhs> PartialEq<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
Rhs: ?Sized + PartialEq<BitSlice<T, O>>,
source§impl<'a, O1, O2, T1, T2> PartialOrd<BitBox<T2, O2>> for &'a BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
impl<'a, O1, O2, T1, T2> PartialOrd<BitBox<T2, O2>> for &'a BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl<'a, O1, O2, T1, T2> PartialOrd<BitBox<T2, O2>> for &'a mut BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
impl<'a, O1, O2, T1, T2> PartialOrd<BitBox<T2, O2>> for &'a mut BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl<O1, O2, T1, T2> PartialOrd<BitBox<T2, O2>> for BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
impl<O1, O2, T1, T2> PartialOrd<BitBox<T2, O2>> for BitSlice<T1, O1>where
O1: BitOrder,
O2: BitOrder,
T1: BitStore,
T2: BitStore,
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl<T, O, Rhs> PartialOrd<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
Rhs: ?Sized + PartialOrd<BitSlice<T, O>>,
impl<T, O, Rhs> PartialOrd<Rhs> for BitBox<T, O>where
T: BitStore,
O: BitOrder,
Rhs: ?Sized + PartialOrd<BitSlice<T, O>>,
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moreimpl<T, O> Eq for BitBox<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> Send for BitBox<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> Sync for BitBox<T, O>where
T: BitStore,
O: BitOrder,
impl<T, O> Unpin for BitBox<T, O>where
T: BitStore,
O: BitOrder,
Auto Trait Implementations§
impl<T, O> RefUnwindSafe for BitBox<T, O>where
O: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, O> UnwindSafe for BitBox<T, O>where
O: UnwindSafe,
T: RefUnwindSafe,
Blanket Implementations§
source§impl<T> FmtForward for T
impl<T> FmtForward for T
source§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
source§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
source§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
source§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
source§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
source§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
source§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
source§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
source§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
source§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read moresource§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read moresource§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> Rwhere
Self: Borrow<B>,
B: 'a + ?Sized,
R: 'a,
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> Rwhere
Self: Borrow<B>,
B: 'a + ?Sized,
R: 'a,
source§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R
) -> Rwhere
Self: BorrowMut<B>,
B: 'a + ?Sized,
R: 'a,
fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R
) -> Rwhere
Self: BorrowMut<B>,
B: 'a + ?Sized,
R: 'a,
source§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> Rwhere
Self: AsRef<U>,
U: 'a + ?Sized,
R: 'a,
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> Rwhere
Self: AsRef<U>,
U: 'a + ?Sized,
R: 'a,
self
, then passes self.as_ref()
into the pipe function.source§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> Rwhere
Self: AsMut<U>,
U: 'a + ?Sized,
R: 'a,
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> Rwhere
Self: AsMut<U>,
U: 'a + ?Sized,
R: 'a,
source§impl<T> Tap for T
impl<T> Tap for T
source§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Selfwhere
Self: Borrow<B>,
B: ?Sized,
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Selfwhere
Self: Borrow<B>,
B: ?Sized,
Borrow<B>
of a value. Read moresource§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Selfwhere
Self: BorrowMut<B>,
B: ?Sized,
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Selfwhere
Self: BorrowMut<B>,
B: ?Sized,
BorrowMut<B>
of a value. Read moresource§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Selfwhere
Self: AsRef<R>,
R: ?Sized,
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Selfwhere
Self: AsRef<R>,
R: ?Sized,
AsRef<R>
view of a value. Read moresource§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Selfwhere
Self: AsMut<R>,
R: ?Sized,
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Selfwhere
Self: AsMut<R>,
R: ?Sized,
AsMut<R>
view of a value. Read moresource§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Selfwhere
Self: Deref<Target = T>,
T: ?Sized,
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Selfwhere
Self: Deref<Target = T>,
T: ?Sized,
Deref::Target
of a value. Read moresource§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Selfwhere
Self: DerefMut<Target = T> + Deref,
T: ?Sized,
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Selfwhere
Self: DerefMut<Target = T> + Deref,
T: ?Sized,
Deref::Target
of a value. Read moresource§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.source§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds. Read moresource§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Selfwhere
Self: Borrow<B>,
B: ?Sized,
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Selfwhere
Self: Borrow<B>,
B: ?Sized,
.tap_borrow()
only in debug builds, and is erased in release
builds. Read moresource§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Selfwhere
Self: BorrowMut<B>,
B: ?Sized,
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Selfwhere
Self: BorrowMut<B>,
B: ?Sized,
.tap_borrow_mut()
only in debug builds, and is erased in release
builds. Read moresource§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Selfwhere
Self: AsRef<R>,
R: ?Sized,
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Selfwhere
Self: AsRef<R>,
R: ?Sized,
.tap_ref()
only in debug builds, and is erased in release
builds. Read moresource§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Selfwhere
Self: AsMut<R>,
R: ?Sized,
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Selfwhere
Self: AsMut<R>,
R: ?Sized,
.tap_ref_mut()
only in debug builds, and is erased in release
builds. Read more