pub trait InstBuilder<'f>: InstBuilderBase<'f> {
Show 245 methods fn jump(self, block: Block, args: &[Value]) -> Inst { ... } fn brz(self, c: Value, block: Block, args: &[Value]) -> Inst { ... } fn brnz(self, c: Value, block: Block, args: &[Value]) -> Inst { ... } fn br_icmp<T1: Into<IntCC>>(
        self,
        Cond: T1,
        x: Value,
        y: Value,
        block: Block,
        args: &[Value]
    ) -> Inst { ... } fn brif<T1: Into<IntCC>>(
        self,
        Cond: T1,
        f: Value,
        block: Block,
        args: &[Value]
    ) -> Inst { ... } fn brff<T1: Into<FloatCC>>(
        self,
        Cond: T1,
        f: Value,
        block: Block,
        args: &[Value]
    ) -> Inst { ... } fn br_table(self, x: Value, block: Block, JT: JumpTable) -> Inst { ... } fn debugtrap(self) -> Inst { ... } fn trap<T1: Into<TrapCode>>(self, code: T1) -> Inst { ... } fn trapz<T1: Into<TrapCode>>(self, c: Value, code: T1) -> Inst { ... } fn resumable_trap<T1: Into<TrapCode>>(self, code: T1) -> Inst { ... } fn trapnz<T1: Into<TrapCode>>(self, c: Value, code: T1) -> Inst { ... } fn resumable_trapnz<T1: Into<TrapCode>>(self, c: Value, code: T1) -> Inst { ... } fn trapif<T1: Into<IntCC>, T2: Into<TrapCode>>(
        self,
        Cond: T1,
        f: Value,
        code: T2
    ) -> Inst { ... } fn trapff<T1: Into<FloatCC>, T2: Into<TrapCode>>(
        self,
        Cond: T1,
        f: Value,
        code: T2
    ) -> Inst { ... } fn return_(self, rvals: &[Value]) -> Inst { ... } fn fallthrough_return(self, rvals: &[Value]) -> Inst { ... } fn call(self, FN: FuncRef, args: &[Value]) -> Inst { ... } fn call_indirect(self, SIG: SigRef, callee: Value, args: &[Value]) -> Inst { ... } fn func_addr(self, iAddr: Type, FN: FuncRef) -> Value { ... } fn splat(self, TxN: Type, x: Value) -> Value { ... } fn swizzle(self, TxN: Type, x: Value, y: Value) -> Value { ... } fn insertlane<T1: Into<Uimm8>>(self, x: Value, y: Value, Idx: T1) -> Value { ... } fn extractlane<T1: Into<Uimm8>>(self, x: Value, Idx: T1) -> Value { ... } fn imin(self, x: Value, y: Value) -> Value { ... } fn umin(self, x: Value, y: Value) -> Value { ... } fn imax(self, x: Value, y: Value) -> Value { ... } fn umax(self, x: Value, y: Value) -> Value { ... } fn avg_round(self, x: Value, y: Value) -> Value { ... } fn uadd_sat(self, x: Value, y: Value) -> Value { ... } fn sadd_sat(self, x: Value, y: Value) -> Value { ... } fn usub_sat(self, x: Value, y: Value) -> Value { ... } fn ssub_sat(self, x: Value, y: Value) -> Value { ... } fn load<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        Mem: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn store<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn istore8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload16<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload16<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn istore16<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload32<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload32<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn istore32<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload8x8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload8x8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn uload16x4<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload16x4<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn uload32x2<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload32x2<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn stack_load<T1: Into<Offset32>>(
        self,
        Mem: Type,
        SS: StackSlot,
        Offset: T1
    ) -> Value { ... } fn stack_store<T1: Into<Offset32>>(
        self,
        x: Value,
        SS: StackSlot,
        Offset: T1
    ) -> Inst { ... } fn stack_addr<T1: Into<Offset32>>(
        self,
        iAddr: Type,
        SS: StackSlot,
        Offset: T1
    ) -> Value { ... } fn global_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn symbol_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn tls_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn heap_addr<T1: Into<Uimm32>>(
        self,
        iAddr: Type,
        H: Heap,
        p: Value,
        Size: T1
    ) -> Value { ... } fn get_pinned_reg(self, iAddr: Type) -> Value { ... } fn set_pinned_reg(self, addr: Value) -> Inst { ... } fn table_addr<T1: Into<Offset32>>(
        self,
        iAddr: Type,
        T: Table,
        p: Value,
        Offset: T1
    ) -> Value { ... } fn iconst<T1: Into<Imm64>>(self, Int: Type, N: T1) -> Value { ... } fn f32const<T1: Into<Ieee32>>(self, N: T1) -> Value { ... } fn f64const<T1: Into<Ieee64>>(self, N: T1) -> Value { ... } fn bconst<T1: Into<bool>>(self, Bool: Type, N: T1) -> Value { ... } fn vconst<T1: Into<Constant>>(self, TxN: Type, N: T1) -> Value { ... } fn const_addr<T1: Into<Constant>>(self, iAddr: Type, constant: T1) -> Value { ... } fn shuffle<T1: Into<Immediate>>(self, a: Value, b: Value, mask: T1) -> Value { ... } fn null(self, Ref: Type) -> Value { ... } fn nop(self) -> Inst { ... } fn select(self, c: Value, x: Value, y: Value) -> Value { ... } fn selectif<T1: Into<IntCC>>(
        self,
        Any: Type,
        cc: T1,
        flags: Value,
        x: Value,
        y: Value
    ) -> Value { ... } fn selectif_spectre_guard<T1: Into<IntCC>>(
        self,
        Any: Type,
        cc: T1,
        flags: Value,
        x: Value,
        y: Value
    ) -> Value { ... } fn bitselect(self, c: Value, x: Value, y: Value) -> Value { ... } fn copy(self, x: Value) -> Value { ... } fn ifcmp_sp(self, addr: Value) -> Value { ... } fn vsplit(self, x: Value) -> (Value, Value) { ... } fn vconcat(self, x: Value, y: Value) -> Value { ... } fn vselect(self, c: Value, x: Value, y: Value) -> Value { ... } fn vany_true(self, a: Value) -> Value { ... } fn vall_true(self, a: Value) -> Value { ... } fn vhigh_bits(self, Int: Type, a: Value) -> Value { ... } fn icmp<T1: Into<IntCC>>(self, Cond: T1, x: Value, y: Value) -> Value { ... } fn icmp_imm<T1: Into<IntCC>, T2: Into<Imm64>>(
        self,
        Cond: T1,
        x: Value,
        Y: T2
    ) -> Value { ... } fn ifcmp(self, x: Value, y: Value) -> Value { ... } fn ifcmp_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn iadd(self, x: Value, y: Value) -> Value { ... } fn isub(self, x: Value, y: Value) -> Value { ... } fn ineg(self, x: Value) -> Value { ... } fn iabs(self, x: Value) -> Value { ... } fn imul(self, x: Value, y: Value) -> Value { ... } fn umulhi(self, x: Value, y: Value) -> Value { ... } fn smulhi(self, x: Value, y: Value) -> Value { ... } fn sqmul_round_sat(self, x: Value, y: Value) -> Value { ... } fn udiv(self, x: Value, y: Value) -> Value { ... } fn sdiv(self, x: Value, y: Value) -> Value { ... } fn urem(self, x: Value, y: Value) -> Value { ... } fn srem(self, x: Value, y: Value) -> Value { ... } fn iadd_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn imul_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn udiv_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn sdiv_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn urem_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn srem_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn irsub_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn iadd_cin(self, x: Value, y: Value, c_in: Value) -> Value { ... } fn iadd_ifcin(self, x: Value, y: Value, c_in: Value) -> Value { ... } fn iadd_cout(self, x: Value, y: Value) -> (Value, Value) { ... } fn iadd_ifcout(self, x: Value, y: Value) -> (Value, Value) { ... } fn iadd_carry(self, x: Value, y: Value, c_in: Value) -> (Value, Value) { ... } fn iadd_ifcarry(self, x: Value, y: Value, c_in: Value) -> (Value, Value) { ... } fn isub_bin(self, x: Value, y: Value, b_in: Value) -> Value { ... } fn isub_ifbin(self, x: Value, y: Value, b_in: Value) -> Value { ... } fn isub_bout(self, x: Value, y: Value) -> (Value, Value) { ... } fn isub_ifbout(self, x: Value, y: Value) -> (Value, Value) { ... } fn isub_borrow(self, x: Value, y: Value, b_in: Value) -> (Value, Value) { ... } fn isub_ifborrow(self, x: Value, y: Value, b_in: Value) -> (Value, Value) { ... } fn band(self, x: Value, y: Value) -> Value { ... } fn bor(self, x: Value, y: Value) -> Value { ... } fn bxor(self, x: Value, y: Value) -> Value { ... } fn bnot(self, x: Value) -> Value { ... } fn band_not(self, x: Value, y: Value) -> Value { ... } fn bor_not(self, x: Value, y: Value) -> Value { ... } fn bxor_not(self, x: Value, y: Value) -> Value { ... } fn band_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn bor_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn bxor_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn rotl(self, x: Value, y: Value) -> Value { ... } fn rotr(self, x: Value, y: Value) -> Value { ... } fn rotl_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn rotr_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn ishl(self, x: Value, y: Value) -> Value { ... } fn ushr(self, x: Value, y: Value) -> Value { ... } fn sshr(self, x: Value, y: Value) -> Value { ... } fn ishl_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn ushr_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn sshr_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn bitrev(self, x: Value) -> Value { ... } fn clz(self, x: Value) -> Value { ... } fn cls(self, x: Value) -> Value { ... } fn ctz(self, x: Value) -> Value { ... } fn popcnt(self, x: Value) -> Value { ... } fn fcmp<T1: Into<FloatCC>>(self, Cond: T1, x: Value, y: Value) -> Value { ... } fn ffcmp(self, x: Value, y: Value) -> Value { ... } fn fadd(self, x: Value, y: Value) -> Value { ... } fn fsub(self, x: Value, y: Value) -> Value { ... } fn fmul(self, x: Value, y: Value) -> Value { ... } fn fdiv(self, x: Value, y: Value) -> Value { ... } fn sqrt(self, x: Value) -> Value { ... } fn fma(self, x: Value, y: Value, z: Value) -> Value { ... } fn fneg(self, x: Value) -> Value { ... } fn fabs(self, x: Value) -> Value { ... } fn fcopysign(self, x: Value, y: Value) -> Value { ... } fn fmin(self, x: Value, y: Value) -> Value { ... } fn fmin_pseudo(self, x: Value, y: Value) -> Value { ... } fn fmax(self, x: Value, y: Value) -> Value { ... } fn fmax_pseudo(self, x: Value, y: Value) -> Value { ... } fn ceil(self, x: Value) -> Value { ... } fn floor(self, x: Value) -> Value { ... } fn trunc(self, x: Value) -> Value { ... } fn nearest(self, x: Value) -> Value { ... } fn is_null(self, x: Value) -> Value { ... } fn is_invalid(self, x: Value) -> Value { ... } fn trueif<T1: Into<IntCC>>(self, Cond: T1, f: Value) -> Value { ... } fn trueff<T1: Into<FloatCC>>(self, Cond: T1, f: Value) -> Value { ... } fn bitcast(self, MemTo: Type, x: Value) -> Value { ... } fn raw_bitcast(self, AnyTo: Type, x: Value) -> Value { ... } fn scalar_to_vector(self, TxN: Type, s: Value) -> Value { ... } fn breduce(self, BoolTo: Type, x: Value) -> Value { ... } fn bextend(self, BoolTo: Type, x: Value) -> Value { ... } fn bint(self, IntTo: Type, x: Value) -> Value { ... } fn bmask(self, IntTo: Type, x: Value) -> Value { ... } fn ireduce(self, IntTo: Type, x: Value) -> Value { ... } fn snarrow(self, x: Value, y: Value) -> Value { ... } fn unarrow(self, x: Value, y: Value) -> Value { ... } fn uunarrow(self, x: Value, y: Value) -> Value { ... } fn swiden_low(self, x: Value) -> Value { ... } fn swiden_high(self, x: Value) -> Value { ... } fn uwiden_low(self, x: Value) -> Value { ... } fn uwiden_high(self, x: Value) -> Value { ... } fn iadd_pairwise(self, x: Value, y: Value) -> Value { ... } fn widening_pairwise_dot_product_s(self, x: Value, y: Value) -> Value { ... } fn uextend(self, IntTo: Type, x: Value) -> Value { ... } fn sextend(self, IntTo: Type, x: Value) -> Value { ... } fn fpromote(self, FloatTo: Type, x: Value) -> Value { ... } fn fdemote(self, FloatTo: Type, x: Value) -> Value { ... } fn fvdemote(self, x: Value) -> Value { ... } fn fvpromote_low(self, a: Value) -> Value { ... } fn fcvt_to_uint(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_uint_sat(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_sint(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_sint_sat(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_from_uint(self, FloatTo: Type, x: Value) -> Value { ... } fn fcvt_from_sint(self, FloatTo: Type, x: Value) -> Value { ... } fn fcvt_low_from_sint(self, FloatTo: Type, x: Value) -> Value { ... } fn isplit(self, x: Value) -> (Value, Value) { ... } fn iconcat(self, lo: Value, hi: Value) -> Value { ... } fn atomic_rmw<T1: Into<MemFlags>, T2: Into<AtomicRmwOp>>(
        self,
        AtomicMem: Type,
        MemFlags: T1,
        AtomicRmwOp: T2,
        p: Value,
        x: Value
    ) -> Value { ... } fn atomic_cas<T1: Into<MemFlags>>(
        self,
        MemFlags: T1,
        p: Value,
        e: Value,
        x: Value
    ) -> Value { ... } fn atomic_load<T1: Into<MemFlags>>(
        self,
        AtomicMem: Type,
        MemFlags: T1,
        p: Value
    ) -> Value { ... } fn atomic_store<T1: Into<MemFlags>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value
    ) -> Inst { ... } fn fence(self) -> Inst { ... } fn AtomicCas(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn AtomicRmw(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        op: AtomicRmwOp,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Binary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BinaryImm64(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Imm64,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BinaryImm8(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Uimm8,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Branch(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BranchFloat(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BranchIcmp(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BranchInt(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BranchTable(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Block,
        table: JumpTable,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Call(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        func_ref: FuncRef,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn CallIndirect(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        sig_ref: SigRef,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn CondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FloatCompare(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FloatCond(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FloatCondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FuncAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        func_ref: FuncRef
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn HeapAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        heap: Heap,
        imm: Uimm32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCompare(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCompareImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        imm: Imm64,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCond(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntSelect(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Jump(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Load(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn LoadNoOffset(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn MultiAry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn NullAry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Shuffle(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Immediate,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StackLoad(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        stack_slot: StackSlot,
        offset: Offset32
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StackStore(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        stack_slot: StackSlot,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Store(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StoreNoOffset(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn TableAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        table: Table,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Ternary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn TernaryImm8(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Uimm8,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Trap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Unary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryBool(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: bool
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryConst(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        constant_handle: Constant
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryGlobalValue(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        global_value: GlobalValue
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee32(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Ieee32
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee64(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Ieee64
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Imm64
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
}
Expand description

Convenience methods for building instructions.

The InstBuilder trait has one method per instruction opcode for conveniently constructing the instruction with minimum arguments. Polymorphic instructions infer their result types from the input arguments when possible. In some cases, an explicit ctrl_typevar argument is required.

The opcode methods return the new instruction’s result values, or the Inst itself for instructions that don’t have any results.

There is also a method per instruction format. These methods all return an Inst.

Provided Methods§

Jump.

Unconditionally jump to a basic block, passing the specified block arguments. The number and types of arguments must match the destination block.

Inputs:

  • block: Destination basic block
  • args: block arguments

Branch when zero.

If c is a b1 value, take the branch when c is false. If c is an integer value, take the branch when c = 0.

Inputs:

  • c: Controlling value to test
  • block: Destination basic block
  • args: block arguments

Branch when non-zero.

If c is a b1 value, take the branch when c is true. If c is an integer value, take the branch when c != 0.

Inputs:

  • c: Controlling value to test
  • block: Destination basic block
  • args: block arguments

Compare scalar integers and branch.

Compare x and y in the same way as the icmp instruction and take the branch if the condition is true:

    br_icmp ugt v1, v2, block4(v5, v6)

is semantically equivalent to:

    v10 = icmp ugt, v1, v2
    brnz v10, block4(v5, v6)

Some RISC architectures like MIPS and RISC-V provide instructions that implement all or some of the condition codes. The instruction can also be used to represent macro-op fusion on architectures like Intel’s.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar integer type
  • y: A scalar integer type
  • block: Destination basic block
  • args: block arguments

Branch when condition is true in integer CPU flags.

Inputs:

  • Cond: An integer comparison condition code.
  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.
  • block: Destination basic block
  • args: block arguments

Branch when condition is true in floating point CPU flags.

Inputs:

  • Cond: A floating point comparison condition code
  • f: CPU flags representing the result of a floating point comparison. These flags can be tested with a :type:floatcc condition code.
  • block: Destination basic block
  • args: block arguments

Indirect branch via jump table.

Use x as an unsigned index into the jump table JT. If a jump table entry is found, branch to the corresponding block. If no entry was found or the index is out-of-bounds, branch to the given default block.

Note that this branch instruction can’t pass arguments to the targeted blocks. Split critical edges as needed to work around this.

Do not confuse this with “tables” in WebAssembly. br_table is for jump tables with destinations within the current function only – think of a match in Rust or a switch in C. If you want to call a function in a dynamic library, that will typically use call_indirect.

Inputs:

  • x: index into jump table
  • block: Destination basic block
  • JT: A jump table.

Encodes an assembly debug trap.

Terminate execution unconditionally.

Inputs:

  • code: A trap reason code.

Trap when zero.

if c is non-zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

A resumable trap.

This instruction allows non-conditional traps to be used as non-terminal instructions.

Inputs:

  • code: A trap reason code.

Trap when non-zero.

If c is zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

A resumable trap to be called when the passed condition is non-zero.

If c is zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

Trap when condition is true in integer CPU flags.

Inputs:

  • Cond: An integer comparison condition code.
  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.
  • code: A trap reason code.

Trap when condition is true in floating point CPU flags.

Inputs:

  • Cond: A floating point comparison condition code
  • f: CPU flags representing the result of a floating point comparison. These flags can be tested with a :type:floatcc condition code.
  • code: A trap reason code.

Return from the function.

Unconditionally transfer control to the calling function, passing the provided return values. The list of return values must match the function signature’s return types.

Inputs:

  • rvals: return values

Return from the function by fallthrough.

This is a specialized instruction for use where one wants to append a custom epilogue, which will then perform the real return. This instruction has no encoding.

Inputs:

  • rvals: return values

Direct function call.

Call a function which has been declared in the preamble. The argument types must match the function’s signature.

Inputs:

  • FN: function to call, declared by function
  • args: call arguments

Outputs:

  • rvals: return values

Indirect function call.

Call the function pointed to by callee with the given arguments. The called function must match the specified signature.

Note that this is different from WebAssembly’s call_indirect; the callee is a native address, rather than a table index. For WebAssembly, table_addr and load are used to obtain a native address from a table.

Inputs:

  • SIG: function signature
  • callee: address of function to call
  • args: call arguments

Outputs:

  • rvals: return values

Get the address of a function.

Compute the absolute address of a function declared in the preamble. The returned address can be used as a callee argument to call_indirect. This is also a method for calling functions that are too far away to be addressable by a direct call instruction.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • FN: function to call, declared by function

Outputs:

  • addr: An integer address type

Vector splat.

Return a vector whose lanes are all x.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • x: Value to splat to all lanes

Outputs:

  • a: A SIMD vector type

Vector swizzle.

Returns a new vector with byte-width lanes selected from the lanes of the first input vector x specified in the second input vector s. The indices i in range [0, 15] select the i-th element of x. For indices outside of the range the resulting lane is 0. Note that this operates on byte-width lanes.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • x: Vector to modify by re-arranging lanes
  • y: Mask for re-arranging lanes

Outputs:

  • a: A SIMD vector type

Insert y as lane Idx in x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x.

Inputs:

  • x: The vector to modify
  • y: New lane value
  • Idx: Lane index

Outputs:

  • a: A SIMD vector type

Extract lane Idx from x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x. Note that the upper bits of a may or may not be zeroed depending on the ISA but the type system should prevent using a as anything other than the extracted value.

Inputs:

  • x: A SIMD vector type
  • Idx: Lane index

Outputs:

  • a:

Signed integer minimum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned integer minimum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Signed integer maximum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned integer maximum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned average with rounding: a := (x + y + 1) // 2

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Add with unsigned saturation.

This is similar to iadd but the operands are interpreted as unsigned integers and their summed result, instead of wrapping, will be saturated to the highest unsigned integer for the controlling type (e.g. 0xFF for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Add with signed saturation.

This is similar to iadd but the operands are interpreted as signed integers and their summed result, instead of wrapping, will be saturated to the lowest or highest signed integer for the controlling type (e.g. 0x80 or 0x7F for i8). For example, since an sadd_sat.i8 of 0x70 and 0x70 is greater than 0x7F, the result will be clamped to 0x7F.

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Subtract with unsigned saturation.

This is similar to isub but the operands are interpreted as unsigned integers and their difference, instead of wrapping, will be saturated to the lowest unsigned integer for the controlling type (e.g. 0x00 for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Subtract with signed saturation.

This is similar to isub but the operands are interpreted as signed integers and their difference, instead of wrapping, will be saturated to the lowest or highest signed integer for the controlling type (e.g. 0x80 or 0x7F for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Load from memory at p + Offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Store x to memory at p + Offset.

This is a polymorphic instruction that can store any value type with a memory representation.

Inputs:

  • MemFlags: Memory operation flags
  • x: Value to be stored
  • p: An integer address type
  • Offset: Byte offset from base address

Load 8 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i8 followed by uextend.

Inputs:

  • iExt8 (controlling type variable): An integer type with more than 8 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 8 bits

Load 8 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i8 followed by sextend.

Inputs:

  • iExt8 (controlling type variable): An integer type with more than 8 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 8 bits

Store the low 8 bits of x to memory at p + Offset.

This is equivalent to ireduce.i8 followed by store.i8.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 8 bits
  • p: An integer address type
  • Offset: Byte offset from base address

Load 16 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i16 followed by uextend.

Inputs:

  • iExt16 (controlling type variable): An integer type with more than 16 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 16 bits

Load 16 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i16 followed by sextend.

Inputs:

  • iExt16 (controlling type variable): An integer type with more than 16 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 16 bits

Store the low 16 bits of x to memory at p + Offset.

This is equivalent to ireduce.i16 followed by store.i16.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 16 bits
  • p: An integer address type
  • Offset: Byte offset from base address

Load 32 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i32 followed by uextend.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 32 bits

Load 32 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i32 followed by sextend.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 32 bits

Store the low 32 bits of x to memory at p + Offset.

This is equivalent to ireduce.i32 followed by store.i32.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 32 bits
  • p: An integer address type
  • Offset: Byte offset from base address

Load an 8x8 vector (64 bits) from memory at p + Offset and zero-extend into an i16x8 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load an 8x8 vector (64 bits) from memory at p + Offset and sign-extend into an i16x8 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a 16x4 vector (64 bits) from memory at p + Offset and zero-extend into an i32x4 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a 16x4 vector (64 bits) from memory at p + Offset and sign-extend into an i32x4 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load an 32x2 vector (64 bits) from memory at p + Offset and zero-extend into an i64x2 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a 32x2 vector (64 bits) from memory at p + Offset and sign-extend into an i64x2 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a value from a stack slot at the constant offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Outputs:

  • a: Value loaded

Store a value to a stack slot at a constant offset.

This is a polymorphic instruction that can store any value type with a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

Inputs:

  • x: Value to be stored
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Get the address of a stack slot.

Compute the absolute address of a byte in a stack slot. The offset must refer to a byte inside the stack slot: 0 <= Offset < sizeof(SS).

Inputs:

  • iAddr (controlling type variable): An integer address type
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Outputs:

  • addr: An integer address type

Compute the value of global GV.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded

Compute the value of global GV, which is a symbolic value.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded

Compute the value of global GV, which is a TLS (thread local storage) value.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded

Bounds check and compute absolute address of heap memory.

Verify that the offset range p .. p + Size - 1 is in bounds for the heap H, and generate an absolute address that is safe to dereference.

  1. If p + Size is not greater than the heap bound, return an absolute address corresponding to a byte offset of p from the heap’s base address.
  2. If p + Size is greater than the heap bound, generate a trap.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • H: A heap.
  • p: An unsigned heap offset
  • Size: Size in bytes

Outputs:

  • addr: An integer address type

Gets the content of the pinned register, when it’s enabled.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

Sets the content of the pinned register, when it’s enabled.

Inputs:

  • addr: An integer address type

Bounds check and compute absolute address of a table entry.

Verify that the offset p is in bounds for the table T, and generate an absolute address that is safe to dereference.

Offset must be less than the size of a table element.

  1. If p is not greater than the table bound, return an absolute address corresponding to a byte offset of p from the table’s base address.
  2. If p is greater than the table bound, generate a trap.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • T: A table.
  • p: An unsigned table offset
  • Offset: Byte offset from element address

Outputs:

  • addr: An integer address type

Integer constant.

Create a scalar integer SSA value with an immediate constant value, or an integer vector where all the lanes have the same value.

Inputs:

  • Int (controlling type variable): A scalar or vector integer type
  • N: A 64-bit immediate integer.

Outputs:

  • a: A constant integer scalar or vector value

Floating point constant.

Create a f32 SSA value with an immediate constant value.

Inputs:

  • N: A 32-bit immediate floating point number.

Outputs:

  • a: A constant f32 scalar value

Floating point constant.

Create a f64 SSA value with an immediate constant value.

Inputs:

  • N: A 64-bit immediate floating point number.

Outputs:

  • a: A constant f64 scalar value

Boolean constant.

Create a scalar boolean SSA value with an immediate constant value, or a boolean vector where all the lanes have the same value.

Inputs:

  • Bool (controlling type variable): A scalar or vector boolean type
  • N: An immediate boolean.

Outputs:

  • a: A constant boolean scalar or vector value

SIMD vector constant.

Construct a vector with the given immediate bytes.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • N: The 16 immediate bytes of a 128-bit vector

Outputs:

  • a: A constant vector value

Calculate the base address of a value in the constant pool.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • constant: A constant in the constant pool

Outputs:

  • address: An integer address type

SIMD vector shuffle.

Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the 0-31 range place a 0 in the resulting vector lane.

Inputs:

  • a: A vector value
  • b: A vector value
  • mask: The 16 immediate bytes used for selecting the elements to shuffle

Outputs:

  • a: A vector value

Null constant value for reference types.

Create a scalar reference SSA value with a constant null value.

Inputs:

  • Ref (controlling type variable): A scalar reference type

Outputs:

  • a: A constant reference null value

Just a dummy instruction.

Note: this doesn’t compile to a machine code nop.

Conditional select.

This instruction selects whole values. Use vselect for lane-wise selection.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, boolean, or reference scalar or vector type

Conditional select, dependent on integer condition codes.

Inputs:

  • Any (controlling type variable): Any integer, float, boolean, or reference scalar or vector type
  • cc: Controlling condition code
  • flags: The machine’s flag register
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, boolean, or reference scalar or vector type

Conditional select intended for Spectre guards.

This operation is semantically equivalent to a selectif instruction. However, it is guaranteed to not be removed or otherwise altered by any optimization pass, and is guaranteed to result in a conditional-move instruction, not a branch-based lowering. As such, it is suitable for use when producing Spectre guards. For example, a bounds-check may guard against unsafe speculation past a bounds-check conditional branch by passing the address or index to be accessed through a conditional move, also gated on the same condition. Because no Spectre-vulnerable processors are known to perform speculation on conditional move instructions, this is guaranteed to pick the correct input. If the selected input in case of overflow is a “safe” value, for example a null pointer that causes an exception in the speculative path, this ensures that no Spectre vulnerability will exist.

Inputs:

  • Any (controlling type variable): Any integer, float, boolean, or reference scalar or vector type
  • cc: Controlling condition code
  • flags: The machine’s flag register
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, boolean, or reference scalar or vector type

Conditional select of bits.

For each bit in c, this instruction selects the corresponding bit from x if the bit in c is 1 and the corresponding bit from y if the bit in c is 0. See also: select, vselect.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, boolean, or reference scalar or vector type

Register-register copy.

This instruction copies its input, preserving the value type.

A pure SSA-form program does not need to copy values, but this instruction is useful for representing intermediate stages during instruction transformations, and the register allocator needs a way of representing register copies.

Inputs:

  • x: Any integer, float, boolean, or reference scalar or vector type

Outputs:

  • a: Any integer, float, boolean, or reference scalar or vector type

Compare addr with the stack pointer and set the CPU flags.

This is like ifcmp where addr is the LHS operand and the stack pointer is the RHS.

Inputs:

  • addr: An integer address type

Outputs:

  • flags: The machine’s flag register

Split a vector into two halves.

Split the vector x into two separate values, each containing half of the lanes from x. The result may be two scalars if x only had two lanes.

Inputs:

  • x: Vector to split

Outputs:

  • lo: Low-numbered lanes of x
  • hi: High-numbered lanes of x

Vector concatenation.

Return a vector formed by concatenating x and y. The resulting vector type has twice as many lanes as each of the inputs. The lanes of x appear as the low-numbered lanes, and the lanes of y become the high-numbered lanes of a.

It is possible to form a vector by concatenating two scalars.

Inputs:

  • x: Low-numbered lanes
  • y: High-numbered lanes

Outputs:

  • a: Concatenation of x and y

Vector lane select.

Select lanes from x or y controlled by the lanes of the boolean vector c.

Inputs:

  • c: Controlling vector
  • x: Value to use where c is true
  • y: Value to use where c is false

Outputs:

  • a: A SIMD vector type

Reduce a vector to a scalar boolean.

Return a scalar boolean true if any lane in a is non-zero, false otherwise.

Inputs:

  • a: A SIMD vector type

Outputs:

  • s: A boolean type with 1 bits.

Reduce a vector to a scalar boolean.

Return a scalar boolean true if all lanes in i are non-zero, false otherwise.

Inputs:

  • a: A SIMD vector type

Outputs:

  • s: A boolean type with 1 bits.

Reduce a vector to a scalar integer.

Return a scalar integer, consisting of the concatenation of the most significant bit of each lane of a.

Inputs:

  • Int (controlling type variable): A scalar or vector integer type
  • a: A SIMD vector type

Outputs:

  • x: A scalar or vector integer type

Integer comparison.

The condition code determines if the operands are interpreted as signed or unsigned integers.

SignedUnsignedCondition
eqeqEqual
neneNot equal
sltultLess than
sgeugeGreater than or equal
sgtugtGreater than
sleuleLess than or equal
of*Overflow
nof*No Overflow

* The unsigned version of overflow condition for add has ISA-specific semantics and thus has been kept as a method on the TargetIsa trait as unsigned_add_overflow_condition.

When this instruction compares integer vectors, it returns a boolean vector of lane-wise comparisons.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a:

Compare scalar integer to a constant.

This is the same as the icmp instruction, except one operand is an immediate constant.

This instruction can only compare scalars. Use icmp for lane-wise vector comparisons.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A boolean type with 1 bits.

Compare scalar integers and return flags.

Compare two scalar integer values and return integer CPU flags representing the result.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Compare scalar integer to a constant and return flags.

Like icmp_imm, but returns integer CPU flags instead of testing a specific condition code.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Wrapping integer addition: a := x + y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Wrapping integer subtraction: a := x - y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Integer negation: a := -x \pmod{2^B}.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Integer absolute value with wrapping: a := |x|.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Wrapping integer multiplication: a := x y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned integer multiplication, producing the high half of a double-length result.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Signed integer multiplication, producing the high half of a double-length result.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Fixed-point multiplication of numbers in the QN format, where N + 1 is the number bitwidth: a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)

Polymorphic over all integer types (scalar and vector) with 16- or 32-bit numbers.

Inputs:

  • x: A scalar or vector integer type with 16- or 32-bit numbers
  • y: A scalar or vector integer type with 16- or 32-bit numbers

Outputs:

  • a: A scalar or vector integer type with 16- or 32-bit numbers

Unsigned integer division: a := \lfloor {x \over y} \rfloor.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

Signed integer division rounded toward zero: a := sign(xy) \lfloor {|x| \over |y|}\rfloor.

This operation traps if the divisor is zero, or if the result is not representable in B bits two’s complement. This only happens when x = -2^{B-1}, y = -1.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

Unsigned integer remainder.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

Signed integer remainder. The result has the sign of the dividend.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

Add immediate integer.

Same as iadd, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Integer multiplication by immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Unsigned integer division by an immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Signed integer division by an immediate constant.

This operation traps if the divisor is zero, or if the result is not representable in B bits two’s complement. This only happens when x = -2^{B-1}, Y = -1.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Unsigned integer remainder with immediate divisor.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Signed integer remainder with immediate divisor.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Immediate reverse wrapping subtraction: a := Y - x \pmod{2^B}.

Also works as integer negation when Y = 0. Use iadd_imm with a negative immediate operand for the reverse immediate subtraction.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Add integers with carry in.

Same as iadd with an additional carry input. Computes:

    a = x + y + c_{in} \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: Input carry flag

Outputs:

  • a: A scalar integer type

Add integers with carry in.

Same as iadd with an additional carry flag input. Computes:

    a = x + y + c_{in} \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type

Add integers with carry out.

Same as iadd with an additional carry output.

    a &= x + y \pmod 2^B \\
    c_{out} &= x+y >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • c_out: Output carry flag

Add integers with carry out.

Same as iadd with an additional carry flag output.

    a &= x + y \pmod 2^B \\
    c_{out} &= x+y >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • c_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Add integers with carry in and out.

Same as iadd with an additional carry input and output.

    a &= x + y + c_{in} \pmod 2^B \\
    c_{out} &= x + y + c_{in} >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: Input carry flag

Outputs:

  • a: A scalar integer type
  • c_out: Output carry flag

Add integers with carry in and out.

Same as iadd with an additional carry flag input and output.

    a &= x + y + c_{in} \pmod 2^B \\
    c_{out} &= x + y + c_{in} >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type
  • c_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Subtract integers with borrow in.

Same as isub with an additional borrow flag input. Computes:

    a = x - (y + b_{in}) \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: Input borrow flag

Outputs:

  • a: A scalar integer type

Subtract integers with borrow in.

Same as isub with an additional borrow flag input. Computes:

    a = x - (y + b_{in}) \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type

Subtract integers with borrow out.

Same as isub with an additional borrow flag output.

    a &= x - y \pmod 2^B \\
    b_{out} &= x < y

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • b_out: Output borrow flag

Subtract integers with borrow out.

Same as isub with an additional borrow flag output.

    a &= x - y \pmod 2^B \\
    b_{out} &= x < y

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • b_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Subtract integers with borrow in and out.

Same as isub with an additional borrow flag input and output.

    a &= x - (y + b_{in}) \pmod 2^B \\
    b_{out} &= x < y + b_{in}

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: Input borrow flag

Outputs:

  • a: A scalar integer type
  • b_out: Output borrow flag

Subtract integers with borrow in and out.

Same as isub with an additional borrow flag input and output.

    a &= x - (y + b_{in}) \pmod 2^B \\
    b_{out} &= x < y + b_{in}

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type
  • b_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Bitwise and.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type
  • y: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise or.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type
  • y: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise xor.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type
  • y: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise not.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise and not.

Computes x & ~y.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type
  • y: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise or not.

Computes x | ~y.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type
  • y: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise xor not.

Computes x ^ ~y.

Inputs:

  • x: Any integer, float, or boolean scalar or vector type
  • y: Any integer, float, or boolean scalar or vector type

Outputs:

  • a: Any integer, float, or boolean scalar or vector type

Bitwise and with immediate.

Same as band, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Bitwise or with immediate.

Same as bor, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Bitwise xor with immediate.

Same as bxor, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Rotate left.

Rotate the bits in x by y places.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

Rotate right.

Rotate the bits in x by y places.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

Rotate left by immediate.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Rotate right by immediate.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Integer shift left. Shift the bits in x towards the MSB by y places. Shift in zero bits to the LSB.

The shift amount is masked to the size of x.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= x \cdot 2^s \pmod{2^B}.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

Unsigned shift right. Shift bits in x towards the LSB by y places, shifting in zero bits to the MSB. Also called a logical shift.

The shift amount is masked to the size of the register.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= \lfloor x \cdot 2^{-s} \rfloor.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

Signed shift right. Shift bits in x towards the LSB by y places, shifting in sign bits to the MSB. Also called an arithmetic shift.

The shift amount is masked to the size of the register.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

Integer shift left by immediate.

The shift amount is masked to the size of x.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Unsigned shift right by immediate.

The shift amount is masked to the size of the register.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Signed shift right by immediate.

The shift amount is masked to the size of the register.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Reverse the bits of a integer.

Reverses the bits in x.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Count leading zero bits.

Starting from the MSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Count leading sign bits.

Starting from the MSB after the sign bit in x, count the number of consecutive bits identical to the sign bit. When x is 0 or -1, returns one less than the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Count trailing zeros.

Starting from the LSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Population count

Count the number of one bits in x.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Floating point comparison.

Two IEEE 754-2008 floating point numbers, x and y, relate to each other in exactly one of four ways:

== ==========================================
UN Unordered when one or both numbers is NaN.
EQ When `x = y`. (And `0.0 = -0.0`).
LT When `x < y`.
GT When `x > y`.
== ==========================================

The 14 floatcc condition codes each correspond to a subset of the four relations, except for the empty set which would always be false, and the full set which would always be true.

The condition codes are divided into 7 ‘ordered’ conditions which don’t include UN, and 7 unordered conditions which all include UN.

+-------+------------+---------+------------+-------------------------+
|Ordered             |Unordered             |Condition                |
+=======+============+=========+============+=========================+
|ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
+-------+------------+---------+------------+-------------------------+
|eq     |EQ          |ueq      |UN | EQ     |Equal                    |
+-------+------------+---------+------------+-------------------------+
|one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
+-------+------------+---------+------------+-------------------------+
|lt     |LT          |ult      |UN | LT     |Less than                |
+-------+------------+---------+------------+-------------------------+
|le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
+-------+------------+---------+------------+-------------------------+
|gt     |GT          |ugt      |UN | GT     |Greater than             |
+-------+------------+---------+------------+-------------------------+
|ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
+-------+------------+---------+------------+-------------------------+

The standard C comparison operators, <, <=, >, >=, are all ordered, so they are false if either operand is NaN. The C equality operator, ==, is ordered, and since inequality is defined as the logical inverse it is unordered. They map to the floatcc condition codes as follows:

==== ====== ============
C    `Cond` Subset
==== ====== ============
`==` eq     EQ
`!=` ne     UN | LT | GT
`<`  lt     LT
`<=` le     LT | EQ
`>`  gt     GT
`>=` ge     GT | EQ
==== ====== ============

This subset of condition codes also corresponds to the WebAssembly floating point comparisons of the same name.

When this instruction compares floating point vectors, it returns a boolean vector with the results of lane-wise comparisons.

Inputs:

  • Cond: A floating point comparison condition code
  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a:

Floating point comparison returning flags.

Compares two numbers like fcmp, but returns floating point CPU flags instead of testing a specific condition.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • f: CPU flags representing the result of a floating point comparison. These flags can be tested with a :type:floatcc condition code.

Floating point addition.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point subtraction.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point multiplication.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point division.

Unlike the integer division instructions andudiv`, this can’t trap. Division by zero is infinity or NaN, depending on the dividend.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point square root.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point fused multiply-and-add.

Computes a := xy+z without any intermediate rounding of the product.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number
  • z: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point negation.

Note that this is a pure bitwise operation.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit inverted

Floating point absolute value.

Note that this is a pure bitwise operation.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit cleared

Floating point copy sign.

Note that this is a pure bitwise operation. The sign bit from y is copied to the sign bit of x.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit changed to that of y

Floating point minimum, propagating NaNs using the WebAssembly rules.

If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if each input NaN consists of a mantissa whose most significant bit is 1 and the rest is 0, then the output has the same form. Otherwise, the output mantissa’s most significant bit is 1 and the rest is unspecified.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The smaller of x and y

Floating point pseudo-minimum, propagating NaNs. This behaves differently from fmin. See https://github.com/WebAssembly/simd/pull/122 for background.

The behaviour is defined as fmin_pseudo(a, b) = (b < a) ? b : a, and the behaviour for zero or NaN inputs follows from the behaviour of < with such inputs.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The smaller of x and y

Floating point maximum, propagating NaNs using the WebAssembly rules.

If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if each input NaN consists of a mantissa whose most significant bit is 1 and the rest is 0, then the output has the same form. Otherwise, the output mantissa’s most significant bit is 1 and the rest is unspecified.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The larger of x and y

Floating point pseudo-maximum, propagating NaNs. This behaves differently from fmax. See https://github.com/WebAssembly/simd/pull/122 for background.

The behaviour is defined as fmax_pseudo(a, b) = (a < b) ? b : a, and the behaviour for zero or NaN inputs follows from the behaviour of < with such inputs.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The larger of x and y

Round floating point round to integral, towards positive infinity.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Round floating point round to integral, towards negative infinity.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Round floating point round to integral, towards zero.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Round floating point round to integral, towards nearest with ties to even.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Reference verification.

The condition code determines if the reference type in question is null or not.

Inputs:

  • x: A scalar reference type

Outputs:

  • a: A boolean type with 1 bits.

Reference verification.

The condition code determines if the reference type in question is invalid or not.

Inputs:

  • x: A scalar reference type

Outputs:

  • a: A boolean type with 1 bits.

Test integer CPU flags for a specific condition.

Check the CPU flags in f against the Cond condition code and return true when the condition code is satisfied.

Inputs:

  • Cond: An integer comparison condition code.
  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A boolean type with 1 bits.

Test floating point CPU flags for a specific condition.

Check the CPU flags in f against the Cond condition code and return true when the condition code is satisfied.

Inputs:

  • Cond: A floating point comparison condition code
  • f: CPU flags representing the result of a floating point comparison. These flags can be tested with a :type:floatcc condition code.

Outputs:

  • a: A boolean type with 1 bits.

Reinterpret the bits in x as a different type.

The input and output types must be storable to memory and of the same size. A bitcast is equivalent to storing one type and loading the other type from the same address.

Inputs:

  • MemTo (controlling type variable):
  • x: Any type that can be stored in memory

Outputs:

  • a: Bits of x reinterpreted

Cast the bits in x as a different type of the same bit width.

This instruction does not change the data’s representation but allows data in registers to be used as different types, e.g. an i32x4 as a b8x16. The only constraint on the result a is that it can be raw_bitcast back to the original type. Also, in a raw_bitcast between vector types with the same number of lanes, the value of each result lane is a raw_bitcast of the corresponding operand lane. TODO there is currently no mechanism for enforcing the bit width constraint.

Inputs:

  • AnyTo (controlling type variable):
  • x: Any integer, float, boolean, or reference scalar or vector type

Outputs:

  • a: Bits of x reinterpreted

Copies a scalar value to a vector value. The scalar is copied into the least significant lane of the vector, and all other lanes will be zero.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • s: A scalar value

Outputs:

  • a: A vector value

Convert x to a smaller boolean type in the platform-defined way.

The result type must have the same number of vector lanes as the input, and each lane must not have more bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • BoolTo (controlling type variable): A smaller boolean type with the same number of lanes
  • x: A scalar or vector boolean type

Outputs:

  • a: A smaller boolean type with the same number of lanes

Convert x to a larger boolean type in the platform-defined way.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • BoolTo (controlling type variable): A larger boolean type with the same number of lanes
  • x: A scalar or vector boolean type

Outputs:

  • a: A larger boolean type with the same number of lanes

Convert x to an integer.

True maps to 1 and false maps to 0. The result type must have the same number of vector lanes as the input.

Inputs:

  • IntTo (controlling type variable): An integer type with the same number of lanes
  • x: A scalar or vector boolean type

Outputs:

  • a: An integer type with the same number of lanes

Convert x to an integer mask.

True maps to all 1s and false maps to all 0s. The result type must have the same number of vector lanes as the input.

Inputs:

  • IntTo (controlling type variable): An integer type with the same number of lanes
  • x: A scalar or vector boolean type

Outputs:

  • a: An integer type with the same number of lanes

Convert x to a smaller integer type by dropping high bits.

Each lane in x is converted to a smaller integer type by discarding the most significant bits. This is the same as reducing modulo 2^n.

The result type must have the same number of vector lanes as the input, and each lane must not have more bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • IntTo (controlling type variable): A smaller integer type with the same number of lanes
  • x: A scalar or vector integer type

Outputs:

  • a: A smaller integer type with the same number of lanes

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the signed maximum and minimum.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the unsigned maximum and minimum.

Note that all input lanes are considered signed: any negative lanes will overflow and be replaced with the unsigned minimum, 0x00.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the unsigned maximum and minimum.

Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

Widen the low lanes of x using signed extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Widen the high lanes of x using signed extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Widen the low lanes of x using unsigned extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Widen the high lanes of x using unsigned extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Does lane-wise integer pairwise addition on two operands, putting the combined results into a single vector result. Here a pair refers to adjacent lanes in a vector, i.e. i2 + (i2+1) for i == num_lanes/2. The first operand pairwise add results will make up the low half of the resulting vector while the second operand pairwise add results will make up the upper half of the resulting vector.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
  • y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Takes corresponding elements in x and y, performs a sign-extending length-doubling multiplication on them, then adds adjacent pairs of elements to form the result. For example, if the input vectors are [x3, x2, x1, x0] and [y3, y2, y1, y0], it produces the vector [r1, r0], where r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2) and r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0), and sx(n) sign-extends n to twice its width.

This will double the lane width and halve the number of lanes. So the resulting vector has the same number of bits as x and y do (individually).

See https://github.com/WebAssembly/simd/pull/127 for background info.

Inputs:

  • x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
  • y: A SIMD vector type containing 8 integer lanes each 16 bits wide.

Outputs:

  • a:

Convert x to a larger integer type by zero-extending.

Each lane in x is converted to a larger integer type by adding zeroes. The result has the same numerical value as x when both are interpreted as unsigned integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector integer type

Outputs:

  • a: A larger integer type with the same number of lanes

Convert x to a larger integer type by sign-extending.

Each lane in x is converted to a larger integer type by replicating the sign bit. The result has the same numerical value as x when both are interpreted as signed integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector integer type

Outputs:

  • a: A larger integer type with the same number of lanes

Convert x to a larger floating point format.

Each lane in x is converted to the destination floating point format. This is an exact operation.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have fewer bits than the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector floating point number

Outputs:

  • a: A scalar or vector floating point number

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have more bits than the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector floating point number

Outputs:

  • a: A scalar or vector floating point number

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

Fvdemote differs from fdemote in that with fvdemote it targets vectors. Fvdemote is constrained to having the input type being F64x2 and the result type being F32x4. The result lane that was the upper half of the input lane is initialized to zero.

Inputs:

  • x: A SIMD vector type consisting of 2 lanes of 64-bit floats

Outputs:

  • a: A SIMD vector type consisting of 4 lanes of 32-bit floats

Converts packed single precision floating point to packed double precision floating point.

Considering only the lower half of the register, the low lanes in x are interpreted as single precision floats that are then converted to a double precision floats.

The result type will have half the number of vector lanes as the input. Fvpromote_low is constrained to input F32x4 with a result type of F64x2.

Inputs:

  • a: A SIMD vector type consisting of 4 lanes of 32-bit floats

Outputs:

  • x: A SIMD vector type consisting of 2 lanes of 64-bit floats

Convert floating point to unsigned integer.

Each lane in x is converted to an unsigned integer by rounding towards zero. If x is NaN or if the unsigned integral value cannot be represented in the result type, this instruction traps.

The result type must have the same number of vector lanes as the input.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert floating point to unsigned integer as fcvt_to_uint does, but saturates the input instead of trapping. NaN and negative values are converted to 0.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert floating point to signed integer.

Each lane in x is converted to a signed integer by rounding towards zero. If x is NaN or if the signed integral value cannot be represented in the result type, this instruction traps.

The result type must have the same number of vector lanes as the input.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert floating point to signed integer as fcvt_to_sint does, but saturates the input instead of trapping. NaN values are converted to 0.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert unsigned integer to floating point.

Each lane in x is interpreted as an unsigned integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

Convert signed integer to floating point.

Each lane in x is interpreted as a signed integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

Converts packed signed 32-bit integers to packed double precision floating point.

Considering only the low half of the register, each lane in x is interpreted as a signed 32-bit integer that is then converted to a double precision float. This instruction differs from fcvt_from_sint in that it converts half the number of lanes which are converted to occupy twice the number of bits. No rounding should be needed for the resulting float.

The result type will have half the number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

Split an integer into low and high parts.

Vectors of integers are split lane-wise, so the results have the same number of lanes as the input, but the lanes are half the size.

Returns the low half of x and the high half of x as two independent values.

Inputs:

  • x: An integer type with lanes from i16 upwards

Outputs:

  • lo: The low bits of x
  • hi: The high bits of x

Concatenate low and high bits to form a larger integer type.

Vectors of integers are concatenated lane-wise such that the result has the same number of lanes as the inputs, but the lanes are twice the size.

Inputs:

  • lo: An integer type with lanes type to i64
  • hi: An integer type with lanes type to i64

Outputs:

  • a: The concatenation of lo and hi

Atomically read-modify-write memory at p, with second operand x. The old value is returned. p has the type of the target word size, and x may be an integer type of 8, 16, 32 or 64 bits, even on a 32-bit target. The type of the returned value is the same as the type of x. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
  • MemFlags: Memory operation flags
  • AtomicRmwOp: Atomic Read-Modify-Write Ops
  • p: An integer address type
  • x: Value to be atomically stored

Outputs:

  • a: Value atomically loaded

Perform an atomic compare-and-swap operation on memory at p, with expected value e, storing x if the value at p equals e. The old value at p is returned, regardless of whether the operation succeeds or fails. p has the type of the target word size, and x and e must have the same type and the same size, which may be an integer type of 8, 16, 32 or 64 bits, even on a 32-bit target. The type of the returned value is the same as the type of x and e. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • e: Expected value in CAS
  • x: Value to be atomically stored

Outputs:

  • a: Value atomically loaded

Atomically load from memory at p.

This is a polymorphic instruction that can load any value type which has a memory representation. It should only be used for integer types with 8, 16, 32 or 64 bits. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
  • MemFlags: Memory operation flags
  • p: An integer address type

Outputs:

  • a: Value atomically loaded

Atomically store x to memory at p.

This is a polymorphic instruction that can store any value type with a memory representation. It should only be used for integer types with 8, 16, 32 or 64 bits. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • MemFlags: Memory operation flags
  • x: Value to be atomically stored
  • p: An integer address type

A memory fence. This must provide ordering to ensure that, at a minimum, neither loads nor stores of any kind may move forwards or backwards across the fence. This operation is sequentially consistent.

AtomicCas(imms=(flags: ir::MemFlags), vals=3)

AtomicRmw(imms=(flags: ir::MemFlags, op: ir::AtomicRmwOp), vals=2)

Binary(imms=(), vals=2)

BinaryImm64(imms=(imm: ir::immediates::Imm64), vals=1)

BinaryImm8(imms=(imm: ir::immediates::Uimm8), vals=1)

Branch(imms=(destination: ir::Block), vals=1)

BranchFloat(imms=(cond: ir::condcodes::FloatCC, destination: ir::Block), vals=1)

BranchIcmp(imms=(cond: ir::condcodes::IntCC, destination: ir::Block), vals=2)

BranchInt(imms=(cond: ir::condcodes::IntCC, destination: ir::Block), vals=1)

BranchTable(imms=(destination: ir::Block, table: ir::JumpTable), vals=1)

Call(imms=(func_ref: ir::FuncRef), vals=0)

CallIndirect(imms=(sig_ref: ir::SigRef), vals=1)

CondTrap(imms=(code: ir::TrapCode), vals=1)

FloatCompare(imms=(cond: ir::condcodes::FloatCC), vals=2)

FloatCond(imms=(cond: ir::condcodes::FloatCC), vals=1)

FloatCondTrap(imms=(cond: ir::condcodes::FloatCC, code: ir::TrapCode), vals=1)

FuncAddr(imms=(func_ref: ir::FuncRef), vals=0)

HeapAddr(imms=(heap: ir::Heap, imm: ir::immediates::Uimm32), vals=1)

IntCompare(imms=(cond: ir::condcodes::IntCC), vals=2)

IntCompareImm(imms=(cond: ir::condcodes::IntCC, imm: ir::immediates::Imm64), vals=1)

IntCond(imms=(cond: ir::condcodes::IntCC), vals=1)

IntCondTrap(imms=(cond: ir::condcodes::IntCC, code: ir::TrapCode), vals=1)

IntSelect(imms=(cond: ir::condcodes::IntCC), vals=3)

Jump(imms=(destination: ir::Block), vals=0)

Load(imms=(flags: ir::MemFlags, offset: ir::immediates::Offset32), vals=1)

LoadNoOffset(imms=(flags: ir::MemFlags), vals=1)

MultiAry(imms=(), vals=0)

NullAry(imms=(), vals=0)

Shuffle(imms=(imm: ir::Immediate), vals=2)

StackLoad(imms=(stack_slot: ir::StackSlot, offset: ir::immediates::Offset32), vals=0)

StackStore(imms=(stack_slot: ir::StackSlot, offset: ir::immediates::Offset32), vals=1)

Store(imms=(flags: ir::MemFlags, offset: ir::immediates::Offset32), vals=2)

StoreNoOffset(imms=(flags: ir::MemFlags), vals=2)

TableAddr(imms=(table: ir::Table, offset: ir::immediates::Offset32), vals=1)

Ternary(imms=(), vals=3)

TernaryImm8(imms=(imm: ir::immediates::Uimm8), vals=2)

Trap(imms=(code: ir::TrapCode), vals=0)

Unary(imms=(), vals=1)

UnaryBool(imms=(imm: bool), vals=0)

UnaryConst(imms=(constant_handle: ir::Constant), vals=0)

UnaryGlobalValue(imms=(global_value: ir::GlobalValue), vals=0)

UnaryIeee32(imms=(imm: ir::immediates::Ieee32), vals=0)

UnaryIeee64(imms=(imm: ir::immediates::Ieee64), vals=0)

UnaryImm(imms=(imm: ir::immediates::Imm64), vals=0)

Implementors§

Any type implementing InstBuilderBase gets all the InstBuilder methods for free.