pub trait VartimeMultiscalarMul {
type Point;
fn optional_multiscalar_mul<I, J>(
scalars: I,
points: J
) -> Option<Self::Point>
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<Self::Point>>;
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self::Point
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator,
J::Item: Borrow<Self::Point>,
Self::Point: Clone,
{ ... }
}
Expand description
A trait for variable-time multiscalar multiplication without precomputation.
Required Associated Types§
Required Methods§
sourcefn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<Self::Point>where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<Self::Point>>,
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<Self::Point>where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<Self::Point>>,
Given an iterator of public scalars and an iterator of
Option
s of points, compute either Some(Q)
, where
$$
Q = c_1 P_1 + \cdots + c_n P_n,
$$
if all points were Some(P_i)
, or else return None
.
This function is particularly useful when verifying statements
involving compressed points. Accepting Option<Point>
allows
inlining point decompression into the multiscalar call,
avoiding the need for temporary buffers.
use curve25519_dalek::constants;
use curve25519_dalek::traits::VartimeMultiscalarMul;
use curve25519_dalek::ristretto::RistrettoPoint;
use curve25519_dalek::scalar::Scalar;
// Some scalars
let a = Scalar::from(87329482u64);
let b = Scalar::from(37264829u64);
let c = Scalar::from(98098098u64);
let abc = [a,b,c];
// Some points
let P = constants::RISTRETTO_BASEPOINT_POINT;
let Q = P + P;
let R = P + Q;
let PQR = [P, Q, R];
let compressed = [P.compress(), Q.compress(), R.compress()];
// Now we can compute A1 = a*P + b*Q + c*R using P, Q, R:
let A1 = RistrettoPoint::vartime_multiscalar_mul(&abc, &PQR);
// Or using the compressed points:
let A2 = RistrettoPoint::optional_multiscalar_mul(
&abc,
compressed.iter().map(|pt| pt.decompress()),
);
assert_eq!(A2, Some(A1));
// It's also possible to mix compressed and uncompressed points:
let A3 = RistrettoPoint::optional_multiscalar_mul(
abc.iter()
.chain(abc.iter()),
compressed.iter().map(|pt| pt.decompress())
.chain(PQR.iter().map(|&pt| Some(pt))),
);
assert_eq!(A3, Some(A1+A1));
Provided Methods§
sourcefn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self::Pointwhere
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator,
J::Item: Borrow<Self::Point>,
Self::Point: Clone,
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self::Pointwhere
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator,
J::Item: Borrow<Self::Point>,
Self::Point: Clone,
Given an iterator of public scalars and an iterator of public points, compute $$ Q = c_1 P_1 + \cdots + c_n P_n, $$ using variable-time operations.
It is an error to call this function with two iterators of different lengths.
Examples
The trait bound aims for maximum flexibility: the inputs must be
convertable to iterators (I: IntoIter
), and the iterator’s items
must be Borrow<Scalar>
(or Borrow<Point>
), to allow
iterators returning either Scalar
s or &Scalar
s.
use curve25519_dalek::constants;
use curve25519_dalek::traits::VartimeMultiscalarMul;
use curve25519_dalek::ristretto::RistrettoPoint;
use curve25519_dalek::scalar::Scalar;
// Some scalars
let a = Scalar::from(87329482u64);
let b = Scalar::from(37264829u64);
let c = Scalar::from(98098098u64);
// Some points
let P = constants::RISTRETTO_BASEPOINT_POINT;
let Q = P + P;
let R = P + Q;
// A1 = a*P + b*Q + c*R
let abc = [a,b,c];
let A1 = RistrettoPoint::vartime_multiscalar_mul(&abc, &[P,Q,R]);
// Note: (&abc).into_iter(): Iterator<Item=&Scalar>
// A2 = (-a)*P + (-b)*Q + (-c)*R
let minus_abc = abc.iter().map(|x| -x);
let A2 = RistrettoPoint::vartime_multiscalar_mul(minus_abc, &[P,Q,R]);
// Note: minus_abc.into_iter(): Iterator<Item=Scalar>
assert_eq!(A1.compress(), (-A2).compress());