Struct elliptic_curve::PublicKey
source · pub struct PublicKey<C>where
C: Curve + ProjectiveArithmetic,{ /* private fields */ }
Expand description
Elliptic curve public keys.
This is a wrapper type for AffinePoint
which ensures an inner
non-identity point and provides a common place to handle encoding/decoding.
Parsing “SPKI” Keys
X.509 SubjectPublicKeyInfo
(SPKI) is a commonly used format for encoding
public keys, notably public keys corresponding to PKCS#8 private keys.
(especially ones generated by OpenSSL).
Keys in SPKI format are either binary (ASN.1 BER/DER), or PEM encoded (ASCII) and begin with the following:
-----BEGIN PUBLIC KEY-----
To decode an elliptic curve public key from SPKI, enable the pkcs8
feature of this crate (or the pkcs8
feature of a specific RustCrypto
elliptic curve crate) and use the
[elliptic_curve::pkcs8::DecodePublicKey
][pkcs8::DecodePublicKey
]
trait to parse it.
When the pem
feature of this crate (or a specific RustCrypto elliptic
curve crate) is enabled, a [FromStr
] impl is also available.
serde
support
When the optional serde
feature of this create is enabled, [Serialize
]
and [Deserialize
] impls are provided for this type.
The serialization is binary-oriented and supports ASN.1 DER Subject Public Key Info (SPKI) as the encoding format.
For a more text-friendly encoding of public keys, use [JwkEcKey
] instead.
Implementations§
source§impl<C> PublicKey<C>where
C: Curve + ProjectiveArithmetic,
impl<C> PublicKey<C>where
C: Curve + ProjectiveArithmetic,
sourcepub fn from_affine(point: AffinePoint<C>) -> Result<Self>
pub fn from_affine(point: AffinePoint<C>) -> Result<Self>
Convert an AffinePoint
into a PublicKey
sourcepub fn from_secret_scalar(scalar: &NonZeroScalar<C>) -> Self
pub fn from_secret_scalar(scalar: &NonZeroScalar<C>) -> Self
Compute a PublicKey
from a secret NonZeroScalar
value
(i.e. a secret key represented as a raw scalar value)
sourcepub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self>where
C: Curve,
FieldSize<C>: ModulusSize,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
pub fn from_sec1_bytes(bytes: &[u8]) -> Result<Self>where
C: Curve,
FieldSize<C>: ModulusSize,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
Decode PublicKey
(compressed or uncompressed) from the
Elliptic-Curve-Point-to-Octet-String
encoding described in
SEC 1: Elliptic Curve Cryptography (Version 2.0) section
2.3.3 (page 10).
sourcepub fn as_affine(&self) -> &AffinePoint<C>
pub fn as_affine(&self) -> &AffinePoint<C>
Borrow the inner AffinePoint
from this PublicKey
.
In ECC, public keys are elliptic curve points.
sourcepub fn to_projective(&self) -> ProjectivePoint<C>
pub fn to_projective(&self) -> ProjectivePoint<C>
Convert this PublicKey
to a ProjectivePoint
for the given curve
Trait Implementations§
source§impl<C> AsRef<<C as AffineArithmetic>::AffinePoint> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
impl<C> AsRef<<C as AffineArithmetic>::AffinePoint> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
source§fn as_ref(&self) -> &AffinePoint<C>
fn as_ref(&self) -> &AffinePoint<C>
source§impl<C> From<&PublicKey<C>> for EncodedPoint<C>where
C: Curve + ProjectiveArithmetic + PointCompression,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
impl<C> From<&PublicKey<C>> for EncodedPoint<C>where
C: Curve + ProjectiveArithmetic + PointCompression,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
source§fn from(public_key: &PublicKey<C>) -> EncodedPoint<C>
fn from(public_key: &PublicKey<C>) -> EncodedPoint<C>
source§impl<C> From<PublicKey<C>> for EncodedPoint<C>where
C: Curve + ProjectiveArithmetic + PointCompression,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
impl<C> From<PublicKey<C>> for EncodedPoint<C>where
C: Curve + ProjectiveArithmetic + PointCompression,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
source§fn from(public_key: PublicKey<C>) -> EncodedPoint<C>
fn from(public_key: PublicKey<C>) -> EncodedPoint<C>
source§impl<C> FromEncodedPoint<C> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
impl<C> FromEncodedPoint<C> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
source§fn from_encoded_point(encoded_point: &EncodedPoint<C>) -> CtOption<Self>
fn from_encoded_point(encoded_point: &EncodedPoint<C>) -> CtOption<Self>
Initialize PublicKey
from an EncodedPoint
source§impl<C> Ord for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
impl<C> Ord for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
source§impl<C> PartialEq<PublicKey<C>> for PublicKey<C>where
C: Curve + ProjectiveArithmetic + PartialEq,
impl<C> PartialEq<PublicKey<C>> for PublicKey<C>where
C: Curve + ProjectiveArithmetic + PartialEq,
source§impl<C> PartialOrd<PublicKey<C>> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
impl<C> PartialOrd<PublicKey<C>> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl<C> ToEncodedPoint<C> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
impl<C> ToEncodedPoint<C> for PublicKey<C>where
C: Curve + ProjectiveArithmetic,
AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
FieldSize<C>: ModulusSize,
source§fn to_encoded_point(&self, compress: bool) -> EncodedPoint<C>
fn to_encoded_point(&self, compress: bool) -> EncodedPoint<C>
Serialize this PublicKey
as a SEC1 EncodedPoint
, optionally applying
point compression