pub struct IPV4_MDNS_MULTICAST_ADDRESS { /* private fields */ }

Methods from Deref<Target = Ipv4Addr>§

Returns the four eight-bit integers that make up this address.

Examples
use std::net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(addr.octets(), [127, 0, 0, 1]);

Returns true for the special ‘unspecified’ address (0.0.0.0).

This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.

Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);

Returns true if this is a loopback address (127.0.0.0/8).

This property is defined by IETF RFC 1122.

Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);

Returns true if this is a private address.

The private address ranges are defined in IETF RFC 1918 and include:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16
Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);

Returns true if the address is link-local (169.254.0.0/16).

This property is defined by IETF RFC 3927.

Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
🔬This is a nightly-only experimental API. (ip)

Returns true if the address appears to be globally reachable as specified by the IANA IPv4 Special-Purpose Address Registry. Whether or not an address is practically reachable will depend on your network configuration.

Most IPv4 addresses are globally reachable; unless they are specifically defined as not globally reachable.

Non-exhaustive list of notable addresses that are not globally reachable:

For the complete overview of which addresses are globally reachable, see the table at the IANA IPv4 Special-Purpose Address Registry.

Examples
#![feature(ip)]

use std::net::Ipv4Addr;

// Most IPv4 addresses are globally reachable:
assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);

// However some addresses have been assigned a special meaning
// that makes them not globally reachable. Some examples are:

// The unspecified address (`0.0.0.0`)
assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);

// Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);

// Addresses in the shared address space (`100.64.0.0/10`)
assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);

// The loopback addresses (`127.0.0.0/8`)
assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);

// Link-local addresses (`169.254.0.0/16`)
assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);

// Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);

// Addresses reserved for benchmarking (`198.18.0.0/15`)
assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);

// Reserved addresses (`240.0.0.0/4`)
assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);

// The broadcast address (`255.255.255.255`)
assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);

// For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
🔬This is a nightly-only experimental API. (ip)

Returns true if this address is part of the Shared Address Space defined in IETF RFC 6598 (100.64.0.0/10).

Examples
#![feature(ip)]
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
🔬This is a nightly-only experimental API. (ip)

Returns true if this address part of the 198.18.0.0/15 range, which is reserved for network devices benchmarking. This range is defined in IETF RFC 2544 as 192.18.0.0 through 198.19.255.255 but errata 423 corrects it to 198.18.0.0/15.

Examples
#![feature(ip)]
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
🔬This is a nightly-only experimental API. (ip)

Returns true if this address is reserved by IANA for future use. IETF RFC 1112 defines the block of reserved addresses as 240.0.0.0/4. This range normally includes the broadcast address 255.255.255.255, but this implementation explicitly excludes it, since it is obviously not reserved for future use.

Warning

As IANA assigns new addresses, this method will be updated. This may result in non-reserved addresses being treated as reserved in code that relies on an outdated version of this method.

Examples
#![feature(ip)]
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);

assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
// The broadcast address is not considered as reserved for future use by this implementation
assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);

Returns true if this is a multicast address (224.0.0.0/4).

Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.

Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);

Returns true if this is a broadcast address (255.255.255.255).

A broadcast address has all octets set to 255 as defined in IETF RFC 919.

Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);

Returns true if this address is in a range designated for documentation.

This is defined in IETF RFC 5737:

  • 192.0.2.0/24 (TEST-NET-1)
  • 198.51.100.0/24 (TEST-NET-2)
  • 203.0.113.0/24 (TEST-NET-3)
Examples
use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);

Converts this address to an IPv4-compatible IPv6 address.

a.b.c.d becomes ::a.b.c.d

Note that IPv4-compatible addresses have been officially deprecated. If you don’t explicitly need an IPv4-compatible address for legacy reasons, consider using to_ipv6_mapped instead.

Examples
use std::net::{Ipv4Addr, Ipv6Addr};

assert_eq!(
    Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
    Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
);

Converts this address to an IPv4-mapped IPv6 address.

a.b.c.d becomes ::ffff:a.b.c.d

Examples
use std::net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));

Trait Implementations§

The resulting type after dereferencing.
Dereferences the value.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.