Struct nalgebra::base::EuclideanNorm
source · pub struct EuclideanNorm;
Expand description
Euclidean norm.
Trait Implementations§
source§impl<T: SimdComplexField> Norm<T> for EuclideanNorm
impl<T: SimdComplexField> Norm<T> for EuclideanNorm
source§fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealFieldwhere
R: Dim,
C: Dim,
S: Storage<T, R, C>,
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealFieldwhere
R: Dim,
C: Dim,
S: Storage<T, R, C>,
Apply this norm to the given matrix.
source§fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealFieldwhere
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealFieldwhere
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
Use the metric induced by this norm to compute the metric distance between the two given matrices.
Auto Trait Implementations§
impl RefUnwindSafe for EuclideanNorm
impl Send for EuclideanNorm
impl Sync for EuclideanNorm
impl Unpin for EuclideanNorm
impl UnwindSafe for EuclideanNorm
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.