Struct nalgebra::geometry::Orthographic3
source · pub struct Orthographic3<T: RealField> { /* private fields */ }
Expand description
A 3D orthographic projection stored as a homogeneous 4x4 matrix.
Implementations§
source§impl<T: RealField> Orthographic3<T>
impl<T: RealField> Orthographic3<T>
sourcepub fn new(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> Self
pub fn new(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> Self
Creates a new orthographic projection matrix.
This follows the OpenGL convention, so this will flip the z
axis.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
// Check this projection actually transforms the view cuboid into the double-unit cube.
// See https://www.nalgebra.org/projections/#orthographic-projection for more details.
let p1 = Point3::new(1.0, 2.0, -0.1);
let p2 = Point3::new(1.0, 2.0, -1000.0);
let p3 = Point3::new(1.0, 20.0, -0.1);
let p4 = Point3::new(1.0, 20.0, -1000.0);
let p5 = Point3::new(10.0, 2.0, -0.1);
let p6 = Point3::new(10.0, 2.0, -1000.0);
let p7 = Point3::new(10.0, 20.0, -0.1);
let p8 = Point3::new(10.0, 20.0, -1000.0);
assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
// This also works with flipped axis. In other words, we allow that
// `left > right`, `bottom > top`, and/or `znear > zfar`.
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0));
assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0));
assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0));
assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0));
assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0));
assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0));
assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0));
assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
sourcepub fn from_matrix_unchecked(matrix: Matrix4<T>) -> Self
pub fn from_matrix_unchecked(matrix: Matrix4<T>) -> Self
Wraps the given matrix to interpret it as a 3D orthographic matrix.
It is not checked whether or not the given matrix actually represents an orthographic projection.
Example
let mat = Matrix4::new(
2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
0.0, 0.0, 0.0, 1.0
);
let proj = Orthographic3::from_matrix_unchecked(mat);
assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
sourcepub fn from_fov(aspect: T, vfov: T, znear: T, zfar: T) -> Self
pub fn from_fov(aspect: T, vfov: T, znear: T, zfar: T) -> Self
Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
sourcepub fn inverse(&self) -> Matrix4<T>
pub fn inverse(&self) -> Matrix4<T>
Retrieves the inverse of the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let inv = proj.inverse();
assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
let inv = proj.inverse();
assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
sourcepub fn to_homogeneous(&self) -> Matrix4<T>
pub fn to_homogeneous(&self) -> Matrix4<T>
Computes the corresponding homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let expected = Matrix4::new(
2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
0.0, 0.0, 0.0, 1.0
);
assert_eq!(proj.to_homogeneous(), expected);
sourcepub fn as_matrix(&self) -> &Matrix4<T>
pub fn as_matrix(&self) -> &Matrix4<T>
A reference to the underlying homogeneous transformation matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let expected = Matrix4::new(
2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
0.0, 0.0, 0.0, 1.0
);
assert_eq!(*proj.as_matrix(), expected);
sourcepub fn as_projective(&self) -> &Projective3<T>
pub fn as_projective(&self) -> &Projective3<T>
A reference to this transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
sourcepub fn to_projective(&self) -> Projective3<T>
pub fn to_projective(&self) -> Projective3<T>
This transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
sourcepub fn into_inner(self) -> Matrix4<T>
pub fn into_inner(self) -> Matrix4<T>
Retrieves the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let expected = Matrix4::new(
2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
0.0, 0.0, 0.0, 1.0
);
assert_eq!(proj.into_inner(), expected);
sourcepub fn unwrap(self) -> Matrix4<T>
👎Deprecated: use .into_inner()
instead
pub fn unwrap(self) -> Matrix4<T>
.into_inner()
insteadRetrieves the underlying homogeneous matrix. Deprecated: Use Orthographic3::into_inner instead.
sourcepub fn left(&self) -> T
pub fn left(&self) -> T
The left offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6);
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
sourcepub fn right(&self) -> T
pub fn right(&self) -> T
The right offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6);
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
sourcepub fn bottom(&self) -> T
pub fn bottom(&self) -> T
The bottom offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6);
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
sourcepub fn top(&self) -> T
pub fn top(&self) -> T
The top offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6);
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
sourcepub fn znear(&self) -> T
pub fn znear(&self) -> T
The near plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6);
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
sourcepub fn zfar(&self) -> T
pub fn zfar(&self) -> T
The far plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6);
let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
sourcepub fn project_point(&self, p: &Point3<T>) -> Point3<T>
pub fn project_point(&self, p: &Point3<T>) -> Point3<T>
Projects a point. Faster than matrix multiplication.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let p1 = Point3::new(1.0, 2.0, -0.1);
let p2 = Point3::new(1.0, 2.0, -1000.0);
let p3 = Point3::new(1.0, 20.0, -0.1);
let p4 = Point3::new(1.0, 20.0, -1000.0);
let p5 = Point3::new(10.0, 2.0, -0.1);
let p6 = Point3::new(10.0, 2.0, -1000.0);
let p7 = Point3::new(10.0, 20.0, -0.1);
let p8 = Point3::new(10.0, 20.0, -1000.0);
assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
sourcepub fn unproject_point(&self, p: &Point3<T>) -> Point3<T>
pub fn unproject_point(&self, p: &Point3<T>) -> Point3<T>
Un-projects a point. Faster than multiplication by the underlying matrix inverse.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let p1 = Point3::new(-1.0, -1.0, -1.0);
let p2 = Point3::new(-1.0, -1.0, 1.0);
let p3 = Point3::new(-1.0, 1.0, -1.0);
let p4 = Point3::new(-1.0, 1.0, 1.0);
let p5 = Point3::new( 1.0, -1.0, -1.0);
let p6 = Point3::new( 1.0, -1.0, 1.0);
let p7 = Point3::new( 1.0, 1.0, -1.0);
let p8 = Point3::new( 1.0, 1.0, 1.0);
assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6);
assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
sourcepub fn project_vector<SB>(&self, p: &Vector<T, U3, SB>) -> Vector3<T>where
SB: Storage<T, U3>,
pub fn project_vector<SB>(&self, p: &Vector<T, U3, SB>) -> Vector3<T>where
SB: Storage<T, U3>,
Projects a vector. Faster than matrix multiplication.
Vectors are not affected by the translation part of the projection.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
let v1 = Vector3::x();
let v2 = Vector3::y();
let v3 = Vector3::z();
assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0);
assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0);
assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
sourcepub fn set_left(&mut self, left: T)
pub fn set_left(&mut self, left: T)
Sets the left offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_left(2.0);
assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6);
// It is OK to set a left offset greater than the current right offset.
proj.set_left(20.0);
assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
sourcepub fn set_right(&mut self, right: T)
pub fn set_right(&mut self, right: T)
Sets the right offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_right(15.0);
assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6);
// It is OK to set a right offset smaller than the current left offset.
proj.set_right(-3.0);
assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
sourcepub fn set_bottom(&mut self, bottom: T)
pub fn set_bottom(&mut self, bottom: T)
Sets the bottom offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_bottom(8.0);
assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6);
// It is OK to set a bottom offset greater than the current top offset.
proj.set_bottom(50.0);
assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
sourcepub fn set_top(&mut self, top: T)
pub fn set_top(&mut self, top: T)
Sets the top offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_top(15.0);
assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6);
// It is OK to set a top offset smaller than the current bottom offset.
proj.set_top(-3.0);
assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
sourcepub fn set_znear(&mut self, znear: T)
pub fn set_znear(&mut self, znear: T)
Sets the near plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_znear(8.0);
assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6);
// It is OK to set a znear greater than the current zfar.
proj.set_znear(5000.0);
assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
sourcepub fn set_zfar(&mut self, zfar: T)
pub fn set_zfar(&mut self, zfar: T)
Sets the far plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_zfar(15.0);
assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6);
// It is OK to set a zfar smaller than the current znear.
proj.set_zfar(-3.0);
assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
sourcepub fn set_left_and_right(&mut self, left: T, right: T)
pub fn set_left_and_right(&mut self, left: T, right: T)
Sets the view cuboid offsets along the x
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_left_and_right(7.0, 70.0);
assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6);
assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6);
// It is also OK to have `left > right`.
proj.set_left_and_right(70.0, 7.0);
assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6);
assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
sourcepub fn set_bottom_and_top(&mut self, bottom: T, top: T)
pub fn set_bottom_and_top(&mut self, bottom: T, top: T)
Sets the view cuboid offsets along the y
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_bottom_and_top(7.0, 70.0);
assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6);
assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6);
// It is also OK to have `bottom > top`.
proj.set_bottom_and_top(70.0, 7.0);
assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6);
assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
sourcepub fn set_znear_and_zfar(&mut self, znear: T, zfar: T)
pub fn set_znear_and_zfar(&mut self, znear: T, zfar: T)
Sets the near and far plane offsets of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
proj.set_znear_and_zfar(50.0, 5000.0);
assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6);
assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6);
// It is also OK to have `znear > zfar`.
proj.set_znear_and_zfar(5000.0, 0.5);
assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
Trait Implementations§
source§impl<T: RealField> Clone for Orthographic3<T>
impl<T: RealField> Clone for Orthographic3<T>
source§impl<T: RealField> Debug for Orthographic3<T>
impl<T: RealField> Debug for Orthographic3<T>
source§impl<T: RealField> Distribution<Orthographic3<T>> for Standardwhere
Standard: Distribution<T>,
impl<T: RealField> Distribution<Orthographic3<T>> for Standardwhere
Standard: Distribution<T>,
source§fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Orthographic3<T>
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Orthographic3<T>
Generate an arbitrary random variate for testing purposes.
source§impl<T: RealField> From<Orthographic3<T>> for Matrix4<T>
impl<T: RealField> From<Orthographic3<T>> for Matrix4<T>
source§fn from(orth: Orthographic3<T>) -> Self
fn from(orth: Orthographic3<T>) -> Self
source§impl<T: RealField> PartialEq<Orthographic3<T>> for Orthographic3<T>
impl<T: RealField> PartialEq<Orthographic3<T>> for Orthographic3<T>
impl<T: RealField> Copy for Orthographic3<T>
Auto Trait Implementations§
impl<T> RefUnwindSafe for Orthographic3<T>where
T: RefUnwindSafe,
impl<T> Send for Orthographic3<T>
impl<T> Sync for Orthographic3<T>
impl<T> Unpin for Orthographic3<T>where
T: Unpin,
impl<T> UnwindSafe for Orthographic3<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.