pub struct Schur<T: ComplexField, D: Dim>where
DefaultAllocator: Allocator<T, D, D>,{ /* private fields */ }
Expand description
Schur decomposition of a square matrix.
If this is a real matrix, this will be a RealField Schur decomposition.
Implementations§
source§impl<T: ComplexField, D> Schur<T, D>where
D: DimSub<U1> + Dim,
DefaultAllocator: Allocator<T, D, DimDiff<D, U1>> + Allocator<T, DimDiff<D, U1>> + Allocator<T, D, D> + Allocator<T, D>,
impl<T: ComplexField, D> Schur<T, D>where
D: DimSub<U1> + Dim,
DefaultAllocator: Allocator<T, D, DimDiff<D, U1>> + Allocator<T, DimDiff<D, U1>> + Allocator<T, D, D> + Allocator<T, D>,
sourcepub fn try_new(
m: OMatrix<T, D, D>,
eps: T::RealField,
max_niter: usize
) -> Option<Self>
pub fn try_new(
m: OMatrix<T, D, D>,
eps: T::RealField,
max_niter: usize
) -> Option<Self>
Attempts to compute the Schur decomposition of a square matrix.
If only eigenvalues are needed, it is more efficient to call the matrix method
.eigenvalues()
instead.
Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
sourcepub fn unpack(self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>)
pub fn unpack(self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>)
Retrieves the unitary matrix Q
and the upper-quasitriangular matrix T
such that the
decomposed matrix equals Q * T * Q.transpose()
.
sourcepub fn eigenvalues(&self) -> Option<OVector<T, D>>
pub fn eigenvalues(&self) -> Option<OVector<T, D>>
Computes the real eigenvalues of the decomposed matrix.
Return None
if some eigenvalues are complex.
sourcepub fn complex_eigenvalues(&self) -> OVector<NumComplex<T>, D>where
T: RealField,
DefaultAllocator: Allocator<NumComplex<T>, D>,
pub fn complex_eigenvalues(&self) -> OVector<NumComplex<T>, D>where
T: RealField,
DefaultAllocator: Allocator<NumComplex<T>, D>,
Computes the complex eigenvalues of the decomposed matrix.
Trait Implementations§
source§impl<T: Clone + ComplexField, D: Clone + Dim> Clone for Schur<T, D>where
DefaultAllocator: Allocator<T, D, D>,
impl<T: Clone + ComplexField, D: Clone + Dim> Clone for Schur<T, D>where
DefaultAllocator: Allocator<T, D, D>,
source§impl<T: Debug + ComplexField, D: Debug + Dim> Debug for Schur<T, D>where
DefaultAllocator: Allocator<T, D, D>,
impl<T: Debug + ComplexField, D: Debug + Dim> Debug for Schur<T, D>where
DefaultAllocator: Allocator<T, D, D>,
impl<T: ComplexField, D: Dim> Copy for Schur<T, D>where
DefaultAllocator: Allocator<T, D, D>,
OMatrix<T, D, D>: Copy,
Auto Trait Implementations§
impl<T, D> !RefUnwindSafe for Schur<T, D>
impl<T, D> !Send for Schur<T, D>
impl<T, D> !Sync for Schur<T, D>
impl<T, D> !Unpin for Schur<T, D>
impl<T, D> !UnwindSafe for Schur<T, D>
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.