Trait simba::simd::SimdComplexField
source · pub trait SimdComplexField: SubsetOf<Self> + SupersetOf<f64> + Field + Copy + Neg<Output = Self> + Send + Sync + Any + 'static + Debug + NumAssignOps + NumOps + PartialEq {
type SimdRealField: SimdRealField<SimdBool = <Self as SimdValue>::SimdBool>;
Show 55 methods
fn from_simd_real(re: Self::SimdRealField) -> Self;
fn simd_real(self) -> Self::SimdRealField;
fn simd_imaginary(self) -> Self::SimdRealField;
fn simd_modulus(self) -> Self::SimdRealField;
fn simd_modulus_squared(self) -> Self::SimdRealField;
fn simd_argument(self) -> Self::SimdRealField;
fn simd_norm1(self) -> Self::SimdRealField;
fn simd_scale(self, factor: Self::SimdRealField) -> Self;
fn simd_unscale(self, factor: Self::SimdRealField) -> Self;
fn simd_floor(self) -> Self;
fn simd_ceil(self) -> Self;
fn simd_round(self) -> Self;
fn simd_trunc(self) -> Self;
fn simd_fract(self) -> Self;
fn simd_mul_add(self, a: Self, b: Self) -> Self;
fn simd_abs(self) -> Self::SimdRealField;
fn simd_hypot(self, other: Self) -> Self::SimdRealField;
fn simd_recip(self) -> Self;
fn simd_conjugate(self) -> Self;
fn simd_sin(self) -> Self;
fn simd_cos(self) -> Self;
fn simd_sin_cos(self) -> (Self, Self);
fn simd_tan(self) -> Self;
fn simd_asin(self) -> Self;
fn simd_acos(self) -> Self;
fn simd_atan(self) -> Self;
fn simd_sinh(self) -> Self;
fn simd_cosh(self) -> Self;
fn simd_tanh(self) -> Self;
fn simd_asinh(self) -> Self;
fn simd_acosh(self) -> Self;
fn simd_atanh(self) -> Self;
fn simd_log(self, base: Self::SimdRealField) -> Self;
fn simd_log2(self) -> Self;
fn simd_log10(self) -> Self;
fn simd_ln(self) -> Self;
fn simd_ln_1p(self) -> Self;
fn simd_sqrt(self) -> Self;
fn simd_exp(self) -> Self;
fn simd_exp2(self) -> Self;
fn simd_exp_m1(self) -> Self;
fn simd_powi(self, n: i32) -> Self;
fn simd_powf(self, n: Self::SimdRealField) -> Self;
fn simd_powc(self, n: Self) -> Self;
fn simd_cbrt(self) -> Self;
fn simd_horizontal_sum(self) -> Self::Element;
fn simd_horizontal_product(self) -> Self::Element;
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField) { ... }
fn simd_to_exp(self) -> (Self::SimdRealField, Self) { ... }
fn simd_signum(self) -> Self { ... }
fn simd_sinh_cosh(self) -> (Self, Self) { ... }
fn simd_sinc(self) -> Self { ... }
fn simd_sinhc(self) -> Self { ... }
fn simd_cosc(self) -> Self { ... }
fn simd_coshc(self) -> Self { ... }
}
Expand description
Lane-wise generalisation of ComplexField
for SIMD complex fields.
Each lane of an SIMD complex field should contain one complex field.
Required Associated Types§
sourcetype SimdRealField: SimdRealField<SimdBool = <Self as SimdValue>::SimdBool>
type SimdRealField: SimdRealField<SimdBool = <Self as SimdValue>::SimdBool>
Type of the coefficients of a complex number.
Required Methods§
sourcefn from_simd_real(re: Self::SimdRealField) -> Self
fn from_simd_real(re: Self::SimdRealField) -> Self
Builds a pure-real complex number from the given value.
sourcefn simd_real(self) -> Self::SimdRealField
fn simd_real(self) -> Self::SimdRealField
The real part of this complex number.
sourcefn simd_imaginary(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
The imaginary part of this complex number.
sourcefn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
The modulus of this complex number.
sourcefn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
The squared modulus of this complex number.
sourcefn simd_argument(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
The argument of this complex number.
sourcefn simd_norm1(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
The sum of the absolute value of this complex number’s real and imaginary part.
sourcefn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
Multiplies this complex number by factor
.
sourcefn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
Divides this complex number by factor
.
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
sourcefn simd_abs(self) -> Self::SimdRealField
fn simd_abs(self) -> Self::SimdRealField
The absolute value of this complex number: self / self.signum()
.
This is equivalent to self.modulus()
.
sourcefn simd_hypot(self, other: Self) -> Self::SimdRealField
fn simd_hypot(self, other: Self) -> Self::SimdRealField
Computes (self.conjugate() * self + other.conjugate() * other).sqrt()
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_sin(self) -> Self
fn simd_cos(self) -> Self
fn simd_sin_cos(self) -> (Self, Self)
fn simd_tan(self) -> Self
fn simd_asin(self) -> Self
fn simd_acos(self) -> Self
fn simd_atan(self) -> Self
fn simd_sinh(self) -> Self
fn simd_cosh(self) -> Self
fn simd_tanh(self) -> Self
fn simd_asinh(self) -> Self
fn simd_acosh(self) -> Self
fn simd_atanh(self) -> Self
fn simd_log(self, base: Self::SimdRealField) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_ln(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_sqrt(self) -> Self
fn simd_exp(self) -> Self
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_powf(self, n: Self::SimdRealField) -> Self
fn simd_powc(self, n: Self) -> Self
fn simd_cbrt(self) -> Self
sourcefn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_sum(self) -> Self::Element
Computes the sum of all the lanes of self
.
sourcefn simd_horizontal_product(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
Computes the product of all the lanes of self
.
Provided Methods§
sourcefn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
The polar form of this complex number: (modulus, arg)
sourcefn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
The exponential form of this complex number: (modulus, e^{i arg})
sourcefn simd_signum(self) -> Self
fn simd_signum(self) -> Self
The exponential part of this complex number: self / self.modulus()
fn simd_sinh_cosh(self) -> (Self, Self)
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
Implementations on Foreign Types§
source§impl SimdComplexField for Complex<AutoSimd<[f32; 2]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 2]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 2]>) -> Self
fn simd_log(self, base: AutoSimd<[f32; 2]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type SimdRealField = AutoSimd<[f32; 2]>
fn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
fn from_simd_real(re: Self::SimdRealField) -> Self
fn simd_real(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
fn simd_abs(self) -> Self::SimdRealField
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_cbrt(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_hypot(self, b: Self) -> Self::SimdRealField
fn simd_sin_cos(self) -> (Self, Self)
fn simd_sinh_cosh(self) -> (Self, Self)
source§impl SimdComplexField for Complex<AutoSimd<[f32; 4]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 4]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 4]>) -> Self
fn simd_log(self, base: AutoSimd<[f32; 4]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type SimdRealField = AutoSimd<[f32; 4]>
fn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
fn from_simd_real(re: Self::SimdRealField) -> Self
fn simd_real(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
fn simd_abs(self) -> Self::SimdRealField
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_cbrt(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_hypot(self, b: Self) -> Self::SimdRealField
fn simd_sin_cos(self) -> (Self, Self)
fn simd_sinh_cosh(self) -> (Self, Self)
source§impl SimdComplexField for Complex<AutoSimd<[f32; 8]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 8]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 8]>) -> Self
fn simd_log(self, base: AutoSimd<[f32; 8]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type SimdRealField = AutoSimd<[f32; 8]>
fn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
fn from_simd_real(re: Self::SimdRealField) -> Self
fn simd_real(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
fn simd_abs(self) -> Self::SimdRealField
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_cbrt(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_hypot(self, b: Self) -> Self::SimdRealField
fn simd_sin_cos(self) -> (Self, Self)
fn simd_sinh_cosh(self) -> (Self, Self)
source§impl SimdComplexField for Complex<AutoSimd<[f32; 16]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 16]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 16]>) -> Self
fn simd_log(self, base: AutoSimd<[f32; 16]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type SimdRealField = AutoSimd<[f32; 16]>
fn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
fn from_simd_real(re: Self::SimdRealField) -> Self
fn simd_real(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
fn simd_abs(self) -> Self::SimdRealField
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_cbrt(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_hypot(self, b: Self) -> Self::SimdRealField
fn simd_sin_cos(self) -> (Self, Self)
fn simd_sinh_cosh(self) -> (Self, Self)
source§impl SimdComplexField for Complex<AutoSimd<[f64; 2]>>
impl SimdComplexField for Complex<AutoSimd<[f64; 2]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f64; 2]>) -> Self
fn simd_log(self, base: AutoSimd<[f64; 2]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type SimdRealField = AutoSimd<[f64; 2]>
fn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
fn from_simd_real(re: Self::SimdRealField) -> Self
fn simd_real(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
fn simd_abs(self) -> Self::SimdRealField
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_cbrt(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_hypot(self, b: Self) -> Self::SimdRealField
fn simd_sin_cos(self) -> (Self, Self)
fn simd_sinh_cosh(self) -> (Self, Self)
source§impl SimdComplexField for Complex<AutoSimd<[f64; 4]>>
impl SimdComplexField for Complex<AutoSimd<[f64; 4]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f64; 4]>) -> Self
fn simd_log(self, base: AutoSimd<[f64; 4]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type SimdRealField = AutoSimd<[f64; 4]>
fn simd_horizontal_sum(self) -> Self::Element
fn simd_horizontal_product(self) -> Self::Element
fn from_simd_real(re: Self::SimdRealField) -> Self
fn simd_real(self) -> Self::SimdRealField
fn simd_imaginary(self) -> Self::SimdRealField
fn simd_argument(self) -> Self::SimdRealField
fn simd_modulus(self) -> Self::SimdRealField
fn simd_modulus_squared(self) -> Self::SimdRealField
fn simd_norm1(self) -> Self::SimdRealField
fn simd_recip(self) -> Self
fn simd_conjugate(self) -> Self
fn simd_scale(self, factor: Self::SimdRealField) -> Self
fn simd_unscale(self, factor: Self::SimdRealField) -> Self
fn simd_floor(self) -> Self
fn simd_ceil(self) -> Self
fn simd_round(self) -> Self
fn simd_trunc(self) -> Self
fn simd_fract(self) -> Self
fn simd_mul_add(self, a: Self, b: Self) -> Self
fn simd_abs(self) -> Self::SimdRealField
fn simd_exp2(self) -> Self
fn simd_exp_m1(self) -> Self
fn simd_ln_1p(self) -> Self
fn simd_log2(self) -> Self
fn simd_log10(self) -> Self
fn simd_cbrt(self) -> Self
fn simd_powi(self, n: i32) -> Self
fn simd_hypot(self, b: Self) -> Self::SimdRealField
fn simd_sin_cos(self) -> (Self, Self)
fn simd_sinh_cosh(self) -> (Self, Self)
source§impl SimdComplexField for Complex<AutoSimd<[f64; 8]>>
impl SimdComplexField for Complex<AutoSimd<[f64; 8]>>
source§fn simd_ln(self) -> Self
fn simd_ln(self) -> Self
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Self
fn simd_sqrt(self) -> Self
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(self, exp: Self::SimdRealField) -> Self
fn simd_powf(self, exp: Self::SimdRealField) -> Self
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f64; 8]>) -> Self
fn simd_log(self, base: AutoSimd<[f64; 8]>) -> Self
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_asin(self) -> Self
fn simd_asin(self) -> Self
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Self
fn simd_acos(self) -> Self
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Self
fn simd_atan(self) -> Self
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Self
fn simd_asinh(self) -> Self
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Self
fn simd_acosh(self) -> Self
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Self
fn simd_atanh(self) -> Self
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.